ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards French Smart Building Code: Compliance Checking Based on Semantic Rules

437   0   0.0 ( 0 )
 نشر من قبل Ana Roxin
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Nicolas Bus




اسأل ChatGPT حول البحث

Manually checking models for compliance against building regulation is a time-consuming task for architects and construction engineers. There is thus a need for algorithms that process information from construction projects and report non-compliant elements. Still automated code-compliance checking raises several obstacles. Building regulations are usually published as human readable texts and their content is often ambiguous or incomplete. Also, the vocabulary used for expressing such regulations is very different from the vocabularies used to express Building Information Models (BIM). Furthermore, the high level of details associated to BIM-contained geometries induces complex calculations. Finally, the level of complexity of the IFC standard also hinders the automation of IFC processing tasks. Model chart, formal rules and pre-processors approach allows translating construction regulations into semantic queries. We further demonstrate the usefulness of this approach through several use cases. We argue our approach is a step forward in bridging the gap between regulation texts and automated checking algorithms. Finally with the recent building ontology BOT recommended by the W3C Linked Building Data Community Group, we identify perspectives for standardizing and extending our approach.



قيم البحث

اقرأ أيضاً

Smart contracts have been increasingly used together with blockchains to automate financial and business transactions. However, many bugs and vulnerabilities have been identified in many contracts which raises serious concerns about smart contract se curity, not to mention that the blockchain systems on which the smart contracts are built can be buggy. Thus, there is a significant need to better maintain smart contract code and ensure its high reliability. In this paper, we propose an automated approach to learn characteristics of smart contracts in Solidity, which is useful for clone detection, bug detection and contract validation on smart contracts. Our new approach is based on word embeddings and vector space comparison. We parse smart contract code into word streams with code structural information, convert code elements (e.g., statements, functions) into numerical vectors that are supposed to encode the code syntax and semantics, and compare the similarities among the vectors encoding code and known bugs, to identify potential issues. We have implemented the approach in a prototype, named SmartEmbed. Results show that our tool can effectively identify many repetitive instances of Solidity code, where the clone ratio is around 90%. Code clones such as type-III or even type-IV semantic clones can also be detected accurately. Our tool can identify more than 1000 clone related bugs based on our bug databases efficiently and accurately. Our tool can also help to efficiently validate any given smart contract against a known set of bugs, which can help to improve the users confidence in the reliability of the contract. The anonymous replication packages can be accessed at: https://drive.google.com/file/d/1kauLT3y2IiHPkUlVx4FSTda-dVAyL4za/view?usp=sharing, and evaluated it with more than 22,000 smart contracts collected from the Ethereum blockchain.
The increasing use of social media sites in countries like India has given rise to large volumes of code-mixed data. Sentiment analysis of this data can provide integral insights into peoples perspectives and opinions. Developing robust explainabilit y techniques which explain why models make their predictions becomes essential. In this paper, we propose an adequate methodology to integrate explainable approaches into code-mixed sentiment analysis.
This paper presents a command-line tool, called Entropia, that implements a family of conformance checking measures for process mining founded on the notion of entropy from information theory. The measures allow quantifying classical non-deterministi c and stochastic precision and recall quality criteria for process models automatically discovered from traces executed by IT-systems and recorded in their event logs. A process model has good precision with respect to the log it was discovered from if it does not encode many traces that are not part of the log, and has good recall if it encodes most of the traces from the log. By definition, the measures possess useful properties and can often be computed quickly.
One in twenty-five patients admitted to a hospital will suffer from a hospital acquired infection. If we can intelligently track healthcare staff, patients, and visitors, we can better understand the sources of such infections. We envision a smart ho spital capable of increasing operational efficiency and improving patient care with less spending. In this paper, we propose a non-intrusive vision-based system for tracking peoples activity in hospitals. We evaluate our method for the problem of measuring hand hygiene compliance. Empirically, our method outperforms existing solutions such as proximity-based techniques and covert in-person observational studies. We present intuitive, qualitative results that analyze human movement patterns and conduct spatial analytics which convey our methods interpretability. This work is a step towards a computer-vision based smart hospital and demonstrates promising results for reducing hospital acquired infections.
Building Management Systems (BMS) are crucial in the drive towards smart sustainable cities. This is due to the fact that they have been effective in significantly reducing the energy consumption of buildings. A typical BMS is composed of smart devic es that communicate with one another in order to achieve their purpose. However, the heterogeneity of these devices and their associated meta-data impede the deployment of solutions that depend on the interactions among these devices. Nonetheless, automatically inferring the semantics of these devices using data-driven methods provides an ideal solution to the problems brought about by this heterogeneity. In this paper, we undertake a multi-dimensional study to address the problem of inferring the semantics of IoT devices using machine learning models. Using two datasets with over 67 million data points collected from IoT devices, we developed discriminative models that produced competitive results. Particularly, our study highlights the potential of Image Encoded Time Series (IETS) as a robust alternative to statistical feature-based inference methods. Leveraging just a fraction of the data required by feature-based methods, our evaluations show that this encoding competes with and even outperforms traditional methods in many cases.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا