ترغب بنشر مسار تعليمي؟ اضغط هنا

Tightening Bounds for Variational Inference by Revisiting Perturbation Theory

66   0   0.0 ( 0 )
 نشر من قبل Robert Bamler
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Variational inference has become one of the most widely used methods in latent variable modeling. In its basic form, variational inference employs a fully factorized variational distribution and minimizes its KL divergence to the posterior. As the minimization can only be carried out approximately, this approximation induces a bias. In this paper, we revisit perturbation theory as a powerful way of improving the variational approximation. Perturbation theory relies on a form of Taylor expansion of the log marginal likelihood, vaguely in terms of the log ratio of the true posterior and its variational approximation. While first order terms give the classical variational bound, higher-order terms yield corrections that tighten it. However, traditional perturbation theory does not provide a lower bound, making it inapt for stochastic optimization. In this paper, we present a similar yet alternative way of deriving corrections to the ELBO that resemble perturbation theory, but that result in a valid bound. We show in experiments on Gaussian Processes and Variational Autoencoders that the new bounds are more mass covering, and that the resulting posterior covariances are closer to the true posterior and lead to higher likelihoods on held-out data.

قيم البحث

اقرأ أيضاً

Boosting variational inference (BVI) approximates an intractable probability density by iteratively building up a mixture of simple component distributions one at a time, using techniques from sparse convex optimization to provide both computational scalability and approximation error guarantees. But the guarantees have strong conditions that do not often hold in practice, resulting in degenerate component optimization problems; and we show that the ad-hoc regularization used to prevent degeneracy in practice can cause BVI to fail in unintuitive ways. We thus develop universal boosting variational inference (UBVI), a BVI scheme that exploits the simple geometry of probability densities under the Hellinger metric to prevent the degeneracy of other gradient-based BVI methods, avoid difficult joint optimizations of both component and weight, and simplify fully-corrective weight optimizations. We show that for any target density and any mixture component family, the output of UBVI converges to the best possible approximation in the mixture family, even when the mixture family is misspecified. We develop a scalable implementation based on exponential family mixture components and standard stochastic optimization techniques. Finally, we discuss statistical benefits of the Hellinger distance as a variational objective through bounds on posterior probability, moment, and importance sampling errors. Experiments on multiple datasets and models show that UBVI provides reliable, accurate posterior approximations.
Many computationally-efficient methods for Bayesian deep learning rely on continuous optimization algorithms, but the implementation of these methods requires significant changes to existing code-bases. In this paper, we propose Vprop, a method for G aussian variational inference that can be implemented with two minor changes to the off-the-shelf RMSprop optimizer. Vprop also reduces the memory requirements of Black-Box Variational Inference by half. We derive Vprop using the conjugate-computation variational inference method, and establish its connections to Newtons method, natural-gradient methods, and extended Kalman filters. Overall, this paper presents Vprop as a principled, computationally-efficient, and easy-to-implement method for Bayesian deep learning.
Black box variational inference (BBVI) with reparameterization gradients triggered the exploration of divergence measures other than the Kullback-Leibler (KL) divergence, such as alpha divergences. In this paper, we view BBVI with generalized diverge nces as a form of estimating the marginal likelihood via biased importance sampling. The choice of divergence determines a bias-variance trade-off between the tightness of a bound on the marginal likelihood (low bias) and the variance of its gradient estimators. Drawing on variational perturbation theory of statistical physics, we use these insights to construct a family of new variational bounds. Enumerated by an odd integer order $K$, this family captures the standard KL bound for $K=1$, and converges to the exact marginal likelihood as $Ktoinfty$. Compared to alpha-divergences, our reparameterization gradients have a lower variance. We show in experiments on Gaussian Processes and Variational Autoencoders that the new bounds are more mass covering, and that the resulting posterior covariances are closer to the true posterior and lead to higher likelihoods on held-out data.
Approximating a probability density in a tractable manner is a central task in Bayesian statistics. Variational Inference (VI) is a popular technique that achieves tractability by choosing a relatively simple variational family. Borrowing ideas from the classic boosting framework, recent approaches attempt to emph{boost} VI by replacing the selection of a single density with a greedily constructed mixture of densities. In order to guarantee convergence, previous works impose stringent assumptions that require significant effort for practitioners. Specifically, they require a custom implementation of the greedy step (called the LMO) for every probabilistic model with respect to an unnatural variational family of truncated distributions. Our work fixes these issues with novel theoretical and algorithmic insights. On the theoretical side, we show that boosting VI satisfies a relaxed smoothness assumption which is sufficient for the convergence of the functional Frank-Wolfe (FW) algorithm. Furthermore, we rephrase the LMO problem and propose to maximize the Residual ELBO (RELBO) which replaces the standard ELBO optimization in VI. These theoretical enhancements allow for black box implementation of the boosting subroutine. Finally, we present a stopping criterion drawn from the duality gap in the classic FW analyses and exhaustive experiments to illustrate the usefulness of our theoretical and algorithmic contributions.
Partially observable Markov decision processes (POMDPs) are a powerful abstraction for tasks that require decision making under uncertainty, and capture a wide range of real world tasks. Today, effective planning approaches exist that generate effect ive strategies given black-box models of a POMDP task. Yet, an open question is how to acquire accurate models for complex domains. In this paper we propose DELIP, an approach to model learning for POMDPs that utilizes amortized structured variational inference. We empirically show that our model leads to effective control strategies when coupled with state-of-the-art planners. Intuitively, model-based approaches should be particularly beneficial in environments with changing reward structures, or where rewards are initially unknown. Our experiments confirm that DELIP is particularly effective in this setting.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا