ترغب بنشر مسار تعليمي؟ اضغط هنا

Floquet analysis of time-averaged trapping potentials

60   0   0.0 ( 0 )
 نشر من قبل Matthew Davis
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Time-averaged trapping potentials have played an important role in the development of the field of ultracold atoms. Despite their widespread application, there is not yet a complete understanding of when a system can be considered time-averaged. Here we use Floquet theory to analyse the lowest energy state of time-periodic trapping potentials, and characterise the transition from a localised state in a slowly moving trap to a delocalised state in a rapidly oscillating time-averaged potential. We investigate how the driving parameters affect the density and phase of the Floquet ground state, and provide a quantitative measure of the degree to which they can be considered time-averaged. We study a number of simple representative systems, and comment on the features affecting the experimental realisation of time-averaged trapping potentials.

قيم البحث

اقرأ أيضاً

Interferometric measurements with matter waves are established techniques for sensitive gravimetry, rotation sensing, and measurement of surface interactions, but compact interferometers will require techniques based on trapped geometries. In a step towards the realization of matter wave interferometers in toroidal geometries, we produce a large, smooth ring trap for Bose-Einstein condensates using rapidly scanned time-averaged dipole potentials. The trap potential is smoothed by using the atom distribution as input to an optical intensity correction algorithm. Smooth rings with a diameter up to 300 $mu$m are demonstrated. We experimentally observe and simulate the dispersion of condensed atoms in the resulting potential, with good agreement serving as an indication of trap smoothness. Under time of flight expansion we observe low energy excitations in the ring, which serves to constrain the lower frequency limit of the scanned potential technique. The resulting ring potential will have applications as a waveguide for atom interferometry and studies of superfluidity.
In this article, we have theoretically studied the time averaged adiabatic potential (TAAP) scheme for realizing different atom trapping geometries. It is shown that by varying time orbiting potential (TOP) fields and radio frequency (rf) fields para meters, controlled manipulation of trapping potentials, and conversion from one trapping geometry to another, is possible. The proposed trapping geometries can be useful for studying various atom-optic phenomena such as Bose-Einstein condensation (BEC) in low dimensions, super-fluidity, tunnelling, atom interferometry, etc.
We construct a class of period-$n$-tupling discrete time crystals based on $mathbb{Z}_n$ clock variables, for all the integers $n$. We consider two classes of systems where this phenomenology occurs, disordered models with short-range interactions an d fully connected models. In the case of short-range models we provide a complete classification of time-crystal phases for generic $n$. For the specific cases of $n=3$ and $n=4$ we study in details the dynamics by means of exact diagonalisation. In both cases, through an extensive analysis of the Floquet spectrum, we are able to fully map the phase diagram. In the case of infinite-range models, the mapping onto an effective bosonic Hamiltonian allows us to investigate the scaling to the thermodynamic limit. After a general discussion of the problem, we focus on $n=3$ and $n=4$, representative examples of the generic behaviour. Remarkably, for $n=4$ we find clear evidence of a new crystal-to-crystal transition between period $n$-tupling and period $n/2$-tupling.
The versatility of quantum gas experiments greatly benefits from the ability to apply variable potentials. Here we describe a method which allows the preparation of potential structures for microcavity photons via spatially selective deformation of o ptical resonator geometries with a heat induced mirror surface microstructuring technique. We investigate the thermalization of a two-dimensional photon gas in a dye-filled microcavity composed of the custom surface-structured mirrors at wavelength-scale separation. Specifically, we describe measurements of the spatial redistribution of thermal photons in a coupled double-ridge structure, where photons form a Bose-Einstein condensate in a spatially split ground state, as a function of different pumping geometries.
We show that homogeneous lattice gauge theories can realize nonequilibrium quantum phases with long-range spatiotemporal order protected by gauge invariance instead of disorder. We study a kicked $mathbb{Z}_2$-Higgs gauge theory and find that it brea ks the discrete temporal symmetry by a period doubling. In a limit solvable by Jordan-Wigner analysis we extensively study the time-crystal properties for large systems and further find that the spatiotemporal order is robust under the addition of a solvability-breaking perturbation preserving the $mathbb{Z}_2$ gauge symmetry. The protecting mechanism for the nonequilibrium order relies on the Hilbert space structure of lattice gauge theories, so that our results can be directly extended to other models with discrete gauge symmetries.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا