ﻻ يوجد ملخص باللغة العربية
We show that homogeneous lattice gauge theories can realize nonequilibrium quantum phases with long-range spatiotemporal order protected by gauge invariance instead of disorder. We study a kicked $mathbb{Z}_2$-Higgs gauge theory and find that it breaks the discrete temporal symmetry by a period doubling. In a limit solvable by Jordan-Wigner analysis we extensively study the time-crystal properties for large systems and further find that the spatiotemporal order is robust under the addition of a solvability-breaking perturbation preserving the $mathbb{Z}_2$ gauge symmetry. The protecting mechanism for the nonequilibrium order relies on the Hilbert space structure of lattice gauge theories, so that our results can be directly extended to other models with discrete gauge symmetries.
We introduce the concept of a Floquet gauge pump whereby a dynamically engineered Floquet Hamiltonian is employed to reveal the inherent degeneracy of the ground state in interacting systems. We demonstrate this concept in a one-dimensional XY model
Recent works on observation of discrete time-crystalline signatures throw up major puzzles on the necessity of localization for stabilizing such out-of-equilibrium phases. Motivated by these studies, we delve into a clean interacting Floquet system,
The critical properties characterizing the formation of the Floquet time crystal in the prethermal phase are investigated analytically in the periodically driven $O(N)$ model. In particular, we focus on the critical line separating the trivial phase
We propose and analyze two distinct routes toward realizing interacting symmetry-protected topological (SPT) phases via periodic driving. First, we demonstrate that a driven transverse-field Ising model can be used to engineer complex interactions wh
We investigate an unconventional symmetry in time-periodically driven systems, the Floquet dynamical symmetry (FDS). Unlike the usual symmetries, the FDS gives symmetry sectors that are equidistant in the Floquet spectrum and protects quantum coheren