ترغب بنشر مسار تعليمي؟ اضغط هنا

Less-Expensive Valuation of Long Term Annuities Linked to Mortality, Cash and Equity

96   0   0.0 ( 0 )
 نشر من قبل Kevin Fergusson
 تاريخ النشر 2017
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper proposes a paradigm shift in the valuation of long term annuities, away from classical no-arbitrage valuation towards valuation under the real world probability measure. Furthermore, we apply this valuation method to two examples of annuity products, one having annual payments linked to a mortality index and the savings account and the other having annual payments linked to a mortality index and an equity index with a guarantee that is linked to the same mortality index and the savings account. Out-of-sample hedge simulations demonstrate the effectiveness of real world valuation. In contrast to risk neutral valuation, which is a form of relative valuation, the long term average excess return of the equity market comes into play. Instead of the savings account, the numeraire portfolio is employed as the fundamental unit of value in the analysis. The numeraire portfolio is the strictly positive, tradable portfolio that when used as benchmark makes all benchmarked nonnegative portfolios supermartingales. The benchmarked real world value of a benchmarked contingent claim equals its real world conditional expectation. This yields the minimal possible value for its hedgeable part and minimizes the fluctuations for its benchmarked hedge error. Under classical assumptions, actuarial and risk neutral valuation emerge as special cases of the proposed real world valuation. In long term liability and asset valuation, the proposed real world valuation can lead to significantly lower values than suggested by classical approaches when an equivalent risk neutral probability measure does not exist.



قيم البحث

اقرأ أيضاً

While abundant empirical studies support the long-range dependence (LRD) of mortality rates, the corresponding impact on mortality securities are largely unknown due to the lack of appropriate tractable models for valuation and risk management purpos es. We propose a novel class of Volterra mortality models that incorporate LRD into the actuarial valuation, retain tractability, and are consistent with the existing continuous-time affine mortality models. We derive the survival probability in closed-form solution by taking into account of the historical health records. The flexibility and tractability of the models make them useful in valuing mortality-related products such as death benefits, annuities, longevity bonds, and many others, as well as offering optimal mean-variance mortality hedging rules. Numerical studies are conducted to examine the effect of incorporating LRD into mortality rates on various insurance products and hedging efficiency.
129 - Anastasis Kratsios 2019
This paper introduces an intermediary between conditional expectation and conditional sublinear expectation, called R-conditioning. The R-conditioning of a random-vector in $L^2$ is defined as the best $L^2$-estimate, given a $sigma$-subalgebra and a degree of model uncertainty. When the random vector represents the payoff of derivative security in a complete financial market, its R-conditioning with respect to the risk-neutral measure is interpreted as its risk-averse value. The optimization problem defining the optimization R-conditioning is shown to be well-posed. We show that the R-conditioning operators can be used to approximate a large class of sublinear expectations to arbitrary precision. We then introduce a novel numerical algorithm for computing the R-conditioning. This algorithm is shown to be strongly convergent. Implementations are used to compare the risk-averse value of a Vanilla option to its traditional risk-neutral value, within the Black-Scholes-Merton framework. Concrete connections to robust finance, sensitivity analysis, and high-dimensional estimation are all treated in this paper.
121 - Nicole El Karoui 2014
The purpose of this paper relies on the study of long term affine yield curves modeling. It is inspired by the Ramsey rule of the economic literature, that links discount rate and marginal utility of aggregate optimal consumption. For such a long mat urity modelization, the possibility of adjusting preferences to new economic information is crucial, justifying the use of progressive utility. This paper studies, in a framework with affine factors, the yield curve given from the Ramsey rule. It first characterizes consistent progressive utility of investment and consumption, given the optimal wealth and consumption processes. A special attention is paid to utilities associated with linear optimal processes with respect to their initial conditions, which is for example the case of power progressive utilities. Those utilities are the basis point to construct other progressive utilities generating non linear optimal processes but leading yet to still tractable computations. This is of particular interest to study the impact of initial wealth on yield curves.
We introduce the general arbitrage-free valuation framework for counterparty risk adjustments in presence of bilateral default risk, including default of the investor. We illustrate the symmetry in the valuation and show that the adjustment involves a long position in a put option plus a short position in a call option, both with zero strike and written on the residual net value of the contract at the relevant default times. We allow for correlation between the default times of the investor, counterparty and underlying portfolio risk factors. We use arbitrage-free stochastic dynamical models. We then specialize our analysis to Credit Default Swaps (CDS) as underlying portfolio, generalizing the work of Brigo and Chourdakis (2008) [5] who deal with unilateral and asymmetric counterparty risk. We introduce stochastic intensity models and a trivariate copula function on the default times exponential variables to model default dependence. Similarly to [5], we find that both default correlation and credit spread volatilities have a relevant and structured impact on the adjustment. Differently from [5], the two parties will now agree on the credit valuation adjustment. We study a case involving British Airways, Lehman Brothers and Royal Dutch Shell, illustrating the bilateral adjustments in concrete crisis situations.
We study market-consistent valuation of liability cash flows motivated by current regulatory frameworks for the insurance industry. Building on the theory on multiple-prior optimal stopping we propose a valuation functional with sound economic proper ties that applies to any liability cash flow. Whereas a replicable cash flow is assigned the market value of the replicating portfolio, a cash flow that is not fully replicable is assigned a value which is the sum of the market value of a replicating portfolio and a positive margin. The margin is a direct consequence of considering a hypothetical transfer of the liability cash flow from an insurance company to an empty corporate entity set up with the sole purpose to manage the liability run-off, subject to repeated capital requirements, and considering the valuation of this entity from the owners perspective taking model uncertainty into account. Aiming for applicability, we consider a detailed insurance application and explain how the optimisation problems over sets of probability measures can be cast as simpler optimisation problems over parameter sets corresponding to parameterised density processes appearing in applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا