ﻻ يوجد ملخص باللغة العربية
Low isometric distortion is often required for mesh parameterizations. A configuration of some vertices, where the distortion is concentrated, provides a way to mitigate isometric distortion, but determining the number and placement of these vertices is non-trivial. We call these vertices distortion points. We present a novel and automatic method to detect distortion points using a voting strategy. Our method integrates two components: candidate generation and candidate voting. Given a closed triangular mesh, we generate candidate distortion points by executing a three-step procedure repeatedly: (1) randomly cut an input to a disk topology; (2) compute a low conformal distortion parameterization; and (3) detect the distortion points. Finally, we count the candidate points and generate the final distortion points by voting. We demonstrate that our algorithm succeeds when employed on various closed meshes with a genus of zero or higher. The distortion points generated by our method are utilized in three applications, including planar parameterization, semi-automatic landmark correspondence, and isotropic remeshing. Compared to other state-of-the-art methods, our method demonstrates stronger practical robustness in distortion point detection.
We introduce a robust optimization method for flip-free distortion energies used, for example, in parametrization, deformation, and volume correspondence. This method can minimize a variety of distortion energies, such as the symmetric Dirichlet ener
Mesh distortion optimization is a popular research topic and has wide range of applications in computer graphics, including geometry modeling, variational shape interpolation, UV parameterization, elastoplastic simulation, etc. In recent years, many
Geometric model fitting is a fundamental task in computer graphics and computer vision. However, most geometric model fitting methods are unable to fit an arbitrary geometric model (e.g. a surface with holes) to incomplete data, due to that the simil
In this paper, we propose a stochastic geometric iterative method to approximate the high-resolution 3D models by finite Loop subdivision surfaces. Given an input mesh as the fitting target, the initial control mesh is generated using the mesh simpli
We present a method for the efficient processing of contact and collision in volumetric elastic models simulated using the Projective Dynamics paradigm. Our approach enables interactive simulation of tetrahedral meshes with more than half a million e