ترغب بنشر مسار تعليمي؟ اضغط هنا

Inequalities on Projected Volumes

53   0   0.0 ( 0 )
 نشر من قبل \\v{Z}arko Ran{\\dj}elovi\\'c
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we study the following geometric problem: given $2^n-1$ real numbers $x_A$ indexed by the non-empty subsets $Asubset {1,..,n}$, is it possible to construct a body $Tsubset mathbb{R}^n$ such that $x_A=|T_A|$ where $|T_A|$ is the $|A|$-dimensional volume of the projection of $T$ onto the subspace spanned by the axes in $A$? As it is more convenient to take logarithms we denote by $psi_n$ the set of all vectors $x$ for which there is a body $T$ such that $x_A=log |T_A|$ for all $A$. Bollobas and Thomason showed that $psi_n$ is contained in the polyhedral cone defined by the class of `uniform cover inequalities. Tan and Zeng conjectured that the convex hull $DeclareMathOperator{conv}{conv}$ $conv(psi_n)$ is equal to the cone given by the uniform cover inequalities. We prove that this conjecture is `nearly right: the closed convex hull $overline{conv}(psi_n)$ is equal to the cone given by the uniform cover inequalities. However, perhaps surprisingly, we also show that $conv (psi_n)$ is not closed for $nge 4$, thus disproving the conjecture.



قيم البحث

اقرأ أيضاً

Firstly, we derive in dimension one a new covariance inequality of $L_{1}-L_{infty}$ type that characterizes the isoperimetric constant as the best constant achieving the inequality. Secondly, we generalize our result to $L_{p}-L_{q}$ bounds for the covariance. Consequently, we recover Cheegers inequality without using the co-area formula. We also prove a generalized weighted Hardy type inequality that is needed to derive our covariance inequalities and that is of independent interest. Finally, we explore some consequences of our covariance inequalities for $L_{p}$-Poincar{e} inequalities and moment bounds. In particular, we obtain optimal constants in general $L_{p}$-Poincar{e} inequalities for measures with finite isoperimetric constant, thus generalizing in dimension one Cheegers inequality, which is a $L_{p}$-Poincar{e} inequality for $p=2$, to any real $pgeq 1$.
Let $mathfrak{M}$ be a semifinite von Neumann algebra on a Hilbert space equipped with a faithful normal semifinite trace $tau$. A closed densely defined operator $x$ affiliated with $mathfrak{M}$ is called $tau$-measurable if there exists a number $ lambda geq 0$ such that $tau left(e^{|x|}(lambda,infty)right)<infty$. A number of useful inequalities, which are known for the trace on Hilbert space operators, are extended to trace on $tau$-measurable operators. In particular, these inequalities imply Clarkson inequalities for $n$-tuples of $tau$-measurable operators. A general parallelogram law for $tau$-measurable operators are given as well.
289 - Michael Loss , Craig Sloane 2009
We prove a sharp Hardy inequality for fractional integrals for functions that are supported on a general domain. The constant is the same as the one for the half-space and hence our result settles a recent conjecture of Bogdan and Dyda.
142 - Nathael Gozlan 2012
We introduce the notion of an interpolating path on the set of probability measures on finite graphs. Using this notion, we first prove a displacement convexity property of entropy along such a path and derive Prekopa-Leindler type inequalities, a Ta lagrand transport-entropy inequality, certain HWI type as well as log-Sobolev type inequalities in discrete settings. To illustrate through examples, we apply our results to the complete graph and to the hypercube for which our results are optimal -- by passing to the limit, we recover the classical log-Sobolev inequality for the standard Gaussian measure with the optimal constant.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا