ﻻ يوجد ملخص باللغة العربية
Let $mathfrak{M}$ be a semifinite von Neumann algebra on a Hilbert space equipped with a faithful normal semifinite trace $tau$. A closed densely defined operator $x$ affiliated with $mathfrak{M}$ is called $tau$-measurable if there exists a number $lambda geq 0$ such that $tau left(e^{|x|}(lambda,infty)right)<infty$. A number of useful inequalities, which are known for the trace on Hilbert space operators, are extended to trace on $tau$-measurable operators. In particular, these inequalities imply Clarkson inequalities for $n$-tuples of $tau$-measurable operators. A general parallelogram law for $tau$-measurable operators are given as well.
Given a von Neumann algebra $M$ denote by $S(M)$ and $LS(M)$ respectively the algebras of all measurable and locally measurable operators affiliated with $M.$ For a faithful normal semi-finite trace $tau$ on $M$ let $S(M, tau)$ (resp. $S_0(M, tau)$)
Given a type I von Neumann algebra $M$ with a faithful normal semi-finite trace $tau,$ let $S_0(M, tau)$ be the algebra of all $tau$-compact operators affiliated with $M.$ We give a complete description of all derivations on the algebra $S_0(M, tau).
We establish that trace inequalities $$|D^{k-1}u|_{L^{frac{n-s}{n-1}}(mathbb{R}^{n},dmu)} leq c |mu|_{L^{1,n-s}(mathbb{R}^{n})}^{frac{n-1}{n-s}}|mathbb{A}[D]u|_{L^{1}(mathbb{R}^{n},dmathscr{L}^{n})}$$ hold for vector fields $uin C^{infty}(mathbb{R}^{
The parallel sum for adjoinable operators on Hilbert $C^*$-modules is introduced and studied. Some results known for matrices and bounded linear operators on Hilbert spaces are generalized to the case of adjointable operators on Hilbert $C^*$-modules
We investigate the orthogonality preserving property for pairs of mappings on inner product $C^*$-modules extending existing results for a single orthogonality-preserving mapping. Guided by the point of view that the $C^*$-valued inner product struct