ﻻ يوجد ملخص باللغة العربية
We introduce an approach for imposing physically informed inductive biases in learned simulation models. We combine graph networks with a differentiable ordinary differential equation integrator as a mechanism for predicting future states, and a Hamiltonian as an internal representation. We find that our approach outperforms baselines without these biases in terms of predictive accuracy, energy accuracy, and zero-shot generalization to time-step sizes and integrator orders not experienced during training. This advances the state-of-the-art of learned simulation, and in principle is applicable beyond physical domains.
Spatial-temporal forecasting has attracted tremendous attention in a wide range of applications, and traffic flow prediction is a canonical and typical example. The complex and long-range spatial-temporal correlations of traffic flow bring it to a mo
Here we present a machine learning framework and model implementation that can learn to simulate a wide variety of challenging physical domains, involving fluids, rigid solids, and deformable materials interacting with one another. Our framework---wh
HNets is a class of neural networks on grounds of physical prior for learning Hamiltonian systems. This paper explains the influences of different integrators as hyper-parameters on the HNets through error analysis. If we define the network target as
We propose new symplectic networks (SympNets) for identifying Hamiltonian systems from data based on a composition of linear, activation and gradient modules. In particular, we define two classes of SympNets: the LA-SympNets composed of linear and ac
Graph Neural Networks (GNNs) have achieved state-of-the-art results on many graph analysis tasks such as node classification and link prediction. However, important unsupervised problems on graphs, such as graph clustering, have proved more resistant