ترغب بنشر مسار تعليمي؟ اضغط هنا

The Implicit Bias of Depth: How Incremental Learning Drives Generalization

320   0   0.0 ( 0 )
 نشر من قبل Daniel Gissin
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

A leading hypothesis for the surprising generalization of neural networks is that the dynamics of gradient descent bias the model towards simple solutions, by searching through the solution space in an incremental order of complexity. We formally define the notion of incremental learning dynamics and derive the conditions on depth and initialization for which this phenomenon arises in deep linear models. Our main theoretical contribution is a dynamical depth separation result, proving that while shallow models can exhibit incremental learning dynamics, they require the initialization to be exponentially small for these dynamics to present themselves. However, once the model becomes deeper, the dependence becomes polynomial and incremental learning can arise in more natural settings. We complement our theoretical findings by experimenting with deep matrix sensing, quadratic neural networks and with binary classification using diagonal and convolutional linear networks, showing all of these models exhibit incremental learning.



قيم البحث

اقرأ أيضاً

The notion of implicit bias, or implicit regularization, has been suggested as a means to explain the surprising generalization ability of modern-days overparameterized learning algorithms. This notion refers to the tendency of the optimization algor ithm towards a certain structured solution that often generalizes well. Recently, several papers have studied implicit regularization and were able to identify this phenomenon in various scenarios. We revisit this paradigm in arguably the simplest non-trivial setup, and study the implicit bias of Stochastic Gradient Descent (SGD) in the context of Stochastic Convex Optimization. As a first step, we provide a simple construction that rules out the existence of a emph{distribution-independent} implicit regularizer that governs the generalization ability of SGD. We then demonstrate a learning problem that rules out a very general class of emph{distribution-dependent} implicit regularizers from explaining generalization, which includes strongly convex regularizers as well as non-degenerate norm-based regularizations. Certain aspects of our constructions point out to significant difficulties in providing a comprehensive explanation of an algorithms generalization performance by solely arguing about its implicit regularization properties.
Most theoretical studies explaining the regularization effect in deep learning have only focused on gradient descent with a sufficient small learning rate or even gradient flow (infinitesimal learning rate). Such researches, however, have neglected a reasonably large learning rate applied in most practical applications. In this work, we characterize the implicit bias effect of deep linear networks for binary classification using the logistic loss in the large learning rate regime, inspired by the seminal work by Lewkowycz et al. [26] in a regression setting with squared loss. They found a learning rate regime with a large stepsize named the catapult phase, where the loss grows at the early stage of training and eventually converges to a minimum that is flatter than those found in the small learning rate regime. We claim that depending on the separation conditions of data, the gradient descent iterates will converge to a flatter minimum in the catapult phase. We rigorously prove this claim under the assumption of degenerate data by overcoming the difficulty of the non-constant Hessian of logistic loss and further characterize the behavior of loss and Hessian for non-separable data. Finally, we demonstrate that flatter minima in the space spanned by non-separable data along with the learning rate in the catapult phase can lead to better generalization empirically.
It has been hypothesized that label smoothing can reduce overfitting and improve generalization, and current empirical evidence seems to corroborate these effects. However, there is a lack of mathematical understanding of when and why such empirical improvements occur. In this paper, as a step towards understanding why label smoothing is effective, we propose a theoretical framework to show how label smoothing provides in controlling the generalization loss. In particular, we show that this benefit can be precisely formulated and identified in the label noise setting, where the training is partially mislabeled. Our theory also predicts the existence of an optimal label smoothing point, a single value for the label smoothing hyperparameter that minimizes generalization loss. Extensive experiments are done to confirm the predictions of our theory. We believe that our findings will help both theoreticians and practitioners understand label smoothing, and better apply them to real-world datasets.
Adversarially trained models exhibit a large generalization gap: they can interpolate the training set even for large perturbation radii, but at the cost of large test error on clean samples. To investigate this gap, we decompose the test risk into i ts bias and variance components and study their behavior as a function of adversarial training perturbation radii ($varepsilon$). We find that the bias increases monotonically with $varepsilon$ and is the dominant term in the risk. Meanwhile, the variance is unimodal as a function of $varepsilon$, peaking near the interpolation threshold for the training set. This characteristic behavior occurs robustly across different datasets and also for other robust training procedures such as randomized smoothing. It thus provides a test for proposed explanations of the generalization gap. We find that some existing explanations fail this test--for instance, by predicting a monotonically increasing variance curve. This underscores the power of bias-variance decompositions in modern settings-by providing two measurements instead of one, they can rule out more explanations than test accuracy alone. We also show that bias and variance can provide useful guidance for scalably reducing the generalization gap, highlighting pre-training and unlabeled data as promising routes.
To improve the sample efficiency of policy-gradient based reinforcement learning algorithms, we propose implicit distributional actor-critic (IDAC) that consists of a distributional critic, built on two deep generator networks (DGNs), and a semi-impl icit actor (SIA), powered by a flexible policy distribution. We adopt a distributional perspective on the discounted cumulative return and model it with a state-action-dependent implicit distribution, which is approximated by the DGNs that take state-action pairs and random noises as their input. Moreover, we use the SIA to provide a semi-implicit policy distribution, which mixes the policy parameters with a reparameterizable distribution that is not constrained by an analytic density function. In this way, the policys marginal distribution is implicit, providing the potential to model complex properties such as covariance structure and skewness, but its parameter and entropy can still be estimated. We incorporate these features with an off-policy algorithm framework to solve problems with continuous action space and compare IDAC with state-of-the-art algorithms on representative OpenAI Gym environments. We observe that IDAC outperforms these baselines in most tasks. Python code is provided.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا