ﻻ يوجد ملخص باللغة العربية
We report on a comprehensive experimental-computational study of a simple T-shaped mixer for Reynolds numbers up to $4000$. In the experiments, we determine the mixing time by applying the Villermaux--Dushman characterization to a water-water mixture. In the numerical simulations, we resolve down to the smallest (Kolmogorov) flow scales in space and time. Excellent agreement is obtained between the experimentally measured mixing time and numerically computed intensity of segregation, especially in the turbulent regime, which validates both approaches. We confirm that the mixing time is mainly determined by the specific power input, as assumed in most mixing-models. However, we show that by suitably manipulating the inflow conditions, the power input necessary to achieve a given mixing time can be reduced by a factor of six. Our study enables detailed investigations of the influence of hydrodynamics on chemical reactions and precipitation processes, as well as the detailed testing of turbulence and micromixing models.
The efficient mixing of fluids is key in many applications, such as chemical reactions and nanoparticle precipitation. Detailed experimental measurements of the mixing dynamics are however difficult to obtain, and so predictive numerical tools are he
We report an experimental study aiming to clarify the role of boundary conditions (BC) in high Rayleigh number $10^8 < {rm{Ra}} < 3 times 10^{12}$ turbulent thermal convection of cryogenic helium gas. We switch between BC closer to constant heat flux
The hydrodynamics of liquid flowing past gas sectors of unidirectional superhydrophobic surfaces is revisited. Attention is focussed on the local slip boundary condition at the liquid-gas interface, which is equivalent to the effect of a gas cavity o
The direct measurement of wall shear stress in turbulent boundary layers (TBL) is challenging, therefore requiring it to be indirectly determined from mean profile measurements. Most popular methods assume the mean streamwise velocity to satisfy eith
On-site boundary conditions are often desired for lattice Boltzmann simulations of fluid flow in complex geometries such as porous media or microfluidic devices. The possibility to specify the exact position of the boundary, independent of other simu