ترغب بنشر مسار تعليمي؟ اضغط هنا

Inflow boundary conditions determine T-mixer efficiency

104   0   0.0 ( 0 )
 نشر من قبل Tobias Schikarski
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on a comprehensive experimental-computational study of a simple T-shaped mixer for Reynolds numbers up to $4000$. In the experiments, we determine the mixing time by applying the Villermaux--Dushman characterization to a water-water mixture. In the numerical simulations, we resolve down to the smallest (Kolmogorov) flow scales in space and time. Excellent agreement is obtained between the experimentally measured mixing time and numerically computed intensity of segregation, especially in the turbulent regime, which validates both approaches. We confirm that the mixing time is mainly determined by the specific power input, as assumed in most mixing-models. However, we show that by suitably manipulating the inflow conditions, the power input necessary to achieve a given mixing time can be reduced by a factor of six. Our study enables detailed investigations of the influence of hydrodynamics on chemical reactions and precipitation processes, as well as the detailed testing of turbulence and micromixing models.



قيم البحث

اقرأ أيضاً

The efficient mixing of fluids is key in many applications, such as chemical reactions and nanoparticle precipitation. Detailed experimental measurements of the mixing dynamics are however difficult to obtain, and so predictive numerical tools are he lpful in designing and optimizing many processes. If two different fluids are considered, the viscosity and density of the mixture depend often nonlinearly on the composition, which makes the modeling of the mixing process particularly challenging. Hence water-water mixtures in simple geometries such as T-mixers have been intensively investigated, but little is known about the dynamics of more complex mixtures, especially in the turbulent regime. We here present a numerical method allowing the accurate simulation of two-fluid mixtures. Using a high-performance implementation of this method we perform direct numerical simulations resolving the spatial and temporal dynamics of water-ethanol flows for Reynolds numbers from 100 to 2000. The flows states encountered during turbulence transition and their mixing properties are discussed in detail and compared to water-water mixtures.
102 - P. Urban , T. Kralik , M. Macek 2021
We report an experimental study aiming to clarify the role of boundary conditions (BC) in high Rayleigh number $10^8 < {rm{Ra}} < 3 times 10^{12}$ turbulent thermal convection of cryogenic helium gas. We switch between BC closer to constant heat flux (CF) and constant temperature (CT) applied to the highly conducting bottom plate of the aspect ratio one cylindrical cell 30 cm in size, leading to dramatic changes in the temperature probability density function and in power spectral density of the temperature fluctuations measured at the bottom plate, while the dynamic thermal behaviour of the top plate and bulk convective flow remain unaffected. Within our experimental accuracy, we find no appreciable changes in Reynolds number Re(Ra) scaling, in the dimensionless heat transfer efficiency expressed via Nusselt number Nu(Ra) scaling, nor in the rate of direction reversals of large scale circulation.
The hydrodynamics of liquid flowing past gas sectors of unidirectional superhydrophobic surfaces is revisited. Attention is focussed on the local slip boundary condition at the liquid-gas interface, which is equivalent to the effect of a gas cavity o n liquid flow. The system is characterized by a large viscosity contrast between liquid and gas, $mu/mu_g gg 1$. We interpret earlier results, namely the dependence of the local slip length on the flow direction, in terms of a tensorial local slip boundary condition and relate the eigenvalues of the local slip length tensor to the texture parameters, such as the width of the groove, $delta$, and the local depth of the groove, $e(y, alpha)$. The latter varies in the direction $y$, orthogonal to the orientation of stripes, and depends on the bevel angle of grooves edges, $pi/2 - alpha$, at the point, where three phases meet. Our theory demonstrates that when grooves are sufficiently deep their eigenvalues of the local slip length tensor depend only on $mu/mu_g$, $delta$, and $alpha$, but not on the depth. The eigenvalues of the local slip length of shallow grooves depend on $mu/mu_g$ and $e(y, alpha)$, although the contribution of the bevel angle is moderate. In order to assess the validity of our theory we propose a novel approach to solve the two-phase hydrodynamic problem, which significantly facilitates and accelerates calculations compared to conventional numerical schemes. The numerical results show that our simple analytical description obtained for limiting cases of deep and shallow grooves remains valid for various unidirectional textures.
The direct measurement of wall shear stress in turbulent boundary layers (TBL) is challenging, therefore requiring it to be indirectly determined from mean profile measurements. Most popular methods assume the mean streamwise velocity to satisfy eith er a logarithmic law in the inner layer or a composite velocity profile with many tuned constants for the entire TBL, and require reliable data from the noise-prone inner layer. A simple method is proposed to determine the wall shear stress in zero pressure gradient TBL from measured mean profiles, without requiring noise-prone near-wall data. The method requires a single point measurement of mean streamwise velocity and mean shear stress in the outer layer, preferably between $20$ to $50$ $%$ of the TBL, and an estimate of boundary layer thickness and shape factor. The friction velocities obtained using the proposed method agree with reference values, to within $3$ $%$ over a range of Reynolds number.
320 - Martin Hecht , Jens Harting 2019
On-site boundary conditions are often desired for lattice Boltzmann simulations of fluid flow in complex geometries such as porous media or microfluidic devices. The possibility to specify the exact position of the boundary, independent of other simu lation parameters, simplifies the analysis of the system. For practical applications it should allow to freely specify the direction of the flux, and it should be straight forward to implement in three dimensions. Furthermore, especially for parallelized solvers it is of great advantage if the boundary condition can be applied locally, involving only information available on the current lattice site. We meet this need by describing in detail how to transfer the approach suggested by Zou and He to a D3Q19 lattice. The boundary condition acts locally, is independent of the details of the relaxation process during collision and contains no artificial slip. In particular, the case of an on-site no-slip boundary condition is naturally included. We test the boundary condition in several setups and confirm that it is capable to accurately model the velocity field up to second order and does not contain any numerical slip.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا