ترغب بنشر مسار تعليمي؟ اضغط هنا

Implementation of on-site velocity boundary conditions for D3Q19 lattice Boltzmann

317   0   0.0 ( 0 )
 نشر من قبل Martin Hecht
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

On-site boundary conditions are often desired for lattice Boltzmann simulations of fluid flow in complex geometries such as porous media or microfluidic devices. The possibility to specify the exact position of the boundary, independent of other simulation parameters, simplifies the analysis of the system. For practical applications it should allow to freely specify the direction of the flux, and it should be straight forward to implement in three dimensions. Furthermore, especially for parallelized solvers it is of great advantage if the boundary condition can be applied locally, involving only information available on the current lattice site. We meet this need by describing in detail how to transfer the approach suggested by Zou and He to a D3Q19 lattice. The boundary condition acts locally, is independent of the details of the relaxation process during collision and contains no artificial slip. In particular, the case of an on-site no-slip boundary condition is naturally included. We test the boundary condition in several setups and confirm that it is capable to accurately model the velocity field up to second order and does not contain any numerical slip.



قيم البحث

اقرأ أيضاً

The squirmer is a simple yet instructive model for microswimmers, which employs an effective slip velocity on the surface of a spherical swimmer to describe its self-propulsion. We solve the hydrodynamic flow problem with the lattice Boltzmann (LB) m ethod, which is well-suited for time-dependent problems involving complex boundary conditions. Incorporating the squirmer into LB is relatively straight-forward, but requires an unexpectedly fine grid resolution to capture the physical flow fields and behaviors accurately. We demonstrate this using four basic hydrodynamic tests: Two for the far-field flow---accuracy of the hydrodynamic moments and squirmer-squirmer interactions---and two that require the near field to be accurately resolved---a squirmer confined to a tube and one scattering off a spherical obstacle---which LB is capable of doing down to the grid resolution. We find good agreement with (numerical) results obtained using other hydrodynamic solvers in the same geometries and identify a minimum required resolution to achieve this reproduction. We discuss our algorithm in the context of other hydrodynamic solvers and present an outlook on its application to multi-squirmer problems.
Lattice Boltzmann Method(LBM) has achieved considerable success on simulating complex flows. However, how to impose correct boundary conditions on the fluid-solid interface with complex geometries is still an open question. Here we proposed a velocit y interpolation based bounce-back scheme where the ideas of interpolated bounce-back and non-equilibrium extrapolation are combined. The proposed scheme is validated by several well-defined benchmark cases. It is shown that the proposed scheme offers a better accuracy at high Reynolds number and less dependency on solids positions which may crucial in many engineering and science applications.
A cascaded lattice Boltzmann (LB) approach based on central moments and multiple relaxation times to simulate thermal convective flows, which are driven by buoyancy forces and/or swirling effects, in the cylindrical coordinate system with axial symme try is presented. In this regard, the dynamics of the axial and radial momentum components along with the pressure are represented by means of the 2D Navier-Stokes equations with geometric mass and momentum source terms in the pseudo Cartesian form, while the evolutions of the azimuthal momentum and the temperature field are each modeled by an advection-diffusion type equation with appropriate local source terms. Based on these, cascaded LB schemes involving three distribution functions are formulated to solve for the fluid motion in the meridian plane using a D2Q9 lattice, and to solve for the azimuthal momentum and the temperature field each using a D2Q5 lattice. The geometric mass and momentum source terms for the flow fields and the energy source term for the temperature field are included using a new symmetric operator splitting technique, via pre-collision and post-collision source steps around the cascaded collision step for each distribution function. These result in a particularly simple and compact formulation to directly represent the effect of various geometric source terms consistently in terms of changes in the appropriate zeroth and first order moments. Simulations of several complex buoyancy-driven thermal flows and including rotational effects in cylindrical geometries using the new axisymmetric cascaded LB schemes show good agreement with prior benchmark results for the structures of the velocity and thermal fields as well as the heat transfer rates given in terms of the Nusselt numbers.
In this paper, we develop and characterize the fully dissipative Lattice Boltzmann method for ultra-relativistic fluids in two dimensions using three equilibrium distribution functions: Maxwell-Juttner, Fermi-Dirac and Bose-Einstein. Our results stem from the expansion of these distribution functions up to fifth order in relativistic polynomials. We also obtain new Gaussian quadratures for square lattices that preserve the spatial resolution. Our models are validated with the Riemann problem and the limitations of lower order expansions to calculate higher order moments are shown. The kinematic viscosity and the thermal conductivity are numerically obtained using the Taylor-Green vortex and the Fourier flow respectively and these transport coefficients are compared with the theoretical prediction from Grads theory. In order to compare different expansion orders, we analyze the temperature and heat flux fields on the time evolution of a hot spot.
A rigorous free energy model for ternary fluid flows with density ratio up to of order $O(10^3)$ is presented and implemented using the entropic lattice Boltzmann scheme. The model is thermodynamically consistent and allows a broad range of surface t ension ratios, covering both partial wetting states where Neumann triangles are formed, and full wetting states where complete encapsulation of one of fluid components is observed. We further demonstrate that we can capture the bouncing, adhesive and insertive regimes for the binary collisions between immiscible droplets suspended in air. Our approach opens up a vast range of multiphase flow applications involving one gas and several liquid components.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا