ﻻ يوجد ملخص باللغة العربية
The Neil Gehrels Swift Observatory carried out prompt searches for gravitational wave (GW) events detected by the LIGO/Virgo Collaboration (LVC) during the second observing run (O2). Swift performed extensive tiling of eight LVC triggers, two of which had very low false-alarm rates (GW 170814 and the epochal GW 170817), indicating a high confidence of being astrophysical in origin; the latter was the first GW event to have an electromagnetic counterpart detected. In this paper we describe the follow-up performed during O2 and the results of our searches. No GW electromagnetic counterparts were detected; this result is expected, as GW 170817 remained the only astrophysical event containing at least one neutron star after LVCs later retraction of some events. A number of X-ray sources were detected, with the majority of identified sources being active galactic nuclei. We discuss the detection rate of transient X-ray sources and their implications in the O2 tiling searches. Finally, we describe the lessons learned during O2, and how these are being used to improve the swift follow-up of GW events. In particular, we simulate a population of GRB afterglows to evaluate our source ranking systems ability to differentiate them from unrelated and uncatalogued X-ray sources. We find that $approx$60-70% of afterglows whose jets are oriented towards Earth will be given high rank (i.e., interesting designation) by the completion of our second follow-up phase (assuming their location in the sky was observed), but that this fraction can be increased to nearly 100% by performing a third follow-up observation of sources exhibiting fading behavior.
The Neil Gehrels Swift Observatory followed up 18 gravitational wave (GW) triggers from the LIGO/Virgo collaboration during the O3 observing run in 2019/2020, performing approximately 6500 pointings in total. Of these events, four were finally classi
One of the most exciting near-term prospects in physics is the potential discovery of gravitational waves by the advanced LIGO and Virgo detectors. To maximise both the confidence of the detection and the science return, it is essential to identify a
We present radio follow-up observations carried out with the Karl G. Jansky Very Large Array during the first observing run (O1) of the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO). A total of three gravitational wave triggers
Between 2011 March and 2014 August Swift responded to 20 triggers from the IceCube neutrino observatory, observing the IceCube 50% confidence error circle in X-rays, typically within 5 hours of the trigger. No confirmed counterpart has been detected.
Gravitational wave (GW) events detectable by LIGO and Virgo have several possible progenitors, including black hole mergers, neutron star mergers, black hole--neutron star mergers, supernovae, and cosmic string cusps. A subset of GW events are expect