ﻻ يوجد ملخص باللغة العربية
We present radio follow-up observations carried out with the Karl G. Jansky Very Large Array during the first observing run (O1) of the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO). A total of three gravitational wave triggers were followed up during the ~4 months of O1, from September 2015 to January 2016. Two of these triggers, GW150914 and GW151226, are binary black hole merger events of high significance. A third trigger, G194575, was subsequently declared as an event of no interest (i.e., a false alarm). Our observations targeted selected optical transients identified by the intermediate Palomar Transient Factory (iPTF) in the Advanced LIGO error regions of the three triggers, and a limited region of the gravitational wave localization area of G194575 not accessible to optical telescopes due to Sun constraints, where a possible high-energy transient was identified. No plausible radio counterparts to GW150914 and GW151226 were found, in agreement with expectations for binary black hole mergers. We show that combining optical and radio observations is key to identifying contaminating radio sources that may be found in the follow-up of gravitational wave triggers, such as emission associated to star formation and AGN. We discuss our results in the context of the theoretical predictions for radio counterparts to gravitational wave transients, and describe our future plans for the radio follow-up of Advanced LIGO (and Virgo) triggers.
The Neil Gehrels Swift Observatory carried out prompt searches for gravitational wave (GW) events detected by the LIGO/Virgo Collaboration (LVC) during the second observing run (O2). Swift performed extensive tiling of eight LVC triggers, two of whic
One of the most exciting near-term prospects in physics is the potential discovery of gravitational waves by the advanced LIGO and Virgo detectors. To maximise both the confidence of the detection and the science return, it is essential to identify a
Between 2011 March and 2014 August Swift responded to 20 triggers from the IceCube neutrino observatory, observing the IceCube 50% confidence error circle in X-rays, typically within 5 hours of the trigger. No confirmed counterpart has been detected.
Gravitational wave (GW) events detectable by LIGO and Virgo have several possible progenitors, including black hole mergers, neutron star mergers, black hole--neutron star mergers, supernovae, and cosmic string cusps. A subset of GW events are expect
The Neil Gehrels Swift Observatory followed up 18 gravitational wave (GW) triggers from the LIGO/Virgo collaboration during the O3 observing run in 2019/2020, performing approximately 6500 pointings in total. Of these events, four were finally classi