ﻻ يوجد ملخص باللغة العربية
Learning semantic correspondence between image and text is significant as it bridges the semantic gap between vision and language. The key challenge is to accurately find and correlate shared semantics in image and text. Most existing methods achieve this goal by representing the shared semantic as a weighted combination of all the fragments (image regions or text words), where fragments relevant to the shared semantic obtain more attention, otherwise less. However, despite relevant ones contribute more to the shared semantic, irrelevant ones will more or less disturb it, and thus will lead to semantic misalignment in the correlation phase. To address this issue, we present a novel Bidirectional Focal Attention Network (BFAN), which not only allows to attend to relevant fragments but also diverts all the attention into these relevant fragments to concentrate on them. The main difference with existing works is they mostly focus on learning attention weight while our BFAN focus on eliminating irrelevant fragments from the shared semantic. The focal attention is achieved by pre-assigning attention based on inter-modality relation, identifying relevant fragments based on intra-modality relation and reassigning attention. Furthermore, the focal attention is jointly applied in both image-to-text and text-to-image directions, which enables to avoid preference to long text or complex image. Experiments show our simple but effective framework significantly outperforms state-of-the-art, with relative Recall@1 gains of 2.2% on both Flicr30K and MSCOCO benchmarks.
Image-text matching tasks have recently attracted a lot of attention in the computer vision field. The key point of this cross-domain problem is how to accurately measure the similarity between the visual and the textual contents, which demands a fin
In this paper, we propose a Bidirectional Attention Network (BANet), an end-to-end framework for monocular depth estimation (MDE) that addresses the limitation of effectively integrating local and global information in convolutional neural networks.
We propose a new approach to determine correspondences between image pairs in the wild under large changes in illumination, viewpoint, context, and material. While other approaches find correspondences between pairs of images by treating the images i
Convolutional neural networks have allowed remarkable advances in single image super-resolution (SISR) over the last decade. Among recent advances in SISR, attention mechanisms are crucial for high-performance SR models. However, the attention mechan
We present a novel facial expression recognition network, called Distract your Attention Network (DAN). Our method is based on two key observations. Firstly, multiple classes share inherently similar underlying facial appearance, and their difference