ﻻ يوجد ملخص باللغة العربية
Compressible electron flow through a narrow cavity is theoretically unstable, and the oscillations occurring during the instability have been proposed as a method of generating Terahertz radiation. We numerically demonstrate that the endpoint of this instability is a nonlinear hydrodynamic oscillator, consisting of an alternating shock wave and rarefaction-like relaxation flowing back and forth in the device. This qualitative physics is robust to cavity inhomogeneity and changes in the equation of state of the fluid. We discuss the frequency and amplitude dependence of the emitted radiation on physical parameters (viscosity, momentum relaxation rate, and bias current) beyond linear response theory, providing clear predictions for future experiments.
Based on a structure consisting of a single graphene layer situated on a periodic dielectric grating, we show theoretically that intense terahertz (THz) radiations can be generated by an electron bunch moving atop the graphene layer. The underlying p
We address the problem of transmission of electrons between two noninteracting leads through a region where they interact (quantum dot). We use a model of spinless electrons hopping on a one-dimensional lattice and with an interaction on a single bon
Two dimensional materials and their heterostructures constitute a promising platform to study correlated electronic states as well as many body physics of excitons. Here, we present experiments that unite these hitherto separate efforts and show how
The thermal radiation from an isolated finite-length carbon nanotube (CNT) is theoretically investigated both in near- and far-field zones. The formation of the discrete spectrum in metallic CNTs in the terahertz range is demonstrated due to the refl
Correlation among particles in finite quantum systems leads to complex behaviour and novel states of matter. One remarkable example is predicted to occur in a semiconductor quantum dot (QD) where at vanishing density the Coulomb correlation among ele