ﻻ يوجد ملخص باللغة العربية
We highlight that the anomalous orbits of Trans-Neptunian Objects (TNOs) and an excess in microlensing events in the 5-year OGLE dataset can be simultaneously explained by a new population of astrophysical bodies with mass several times that of Earth ($M_oplus$). We take these objects to be primordial black holes (PBHs) and point out the orbits of TNOs would be altered if one of these PBHs was captured by the Solar System, inline with the Planet 9 hypothesis. Capture of a free floating planet is a leading explanation for the origin of Planet 9 and we show that the probability of capturing a PBH instead is comparable. The observational constraints on a PBH in the outer Solar System significantly differ from the case of a new ninth planet. This scenario could be confirmed through annihilation signals from the dark matter microhalo around the PBH.
In the system of a gravitating Q-ball, there is a maximum charge $Q_{{rm max}}$ inevitably, while in flat spacetime there is no upper bound on $Q$ in typical models such as the Affleck-Dine model. Theoretically the charge $Q$ is a free parameter, and
We study the well-motivated mixed dark matter (DM) scenario composed of a dominant thermal WIMP, highlighting the case of $SU(2)_L$ triplet fermion winos, with a small fraction of primordial black holes (PBHs). After the wino kinetic decoupling, the
Primordial black holes (PBHs) hypothetically generated in the first instants of life of the Universe are potential dark matter (DM) candidates. Focusing on PBHs masses in the range $[5 times10^{14} - 5 times 10^{15}]$g, we point out that the neutrino
We speculate that the early Universe was inside a primordial black hole. The interior of the the black hole is a dS background and the two spacetimes are separated on the surface of black holes event horizon. We argue that this picture provides a nat
Primordial black holes (PBHs) are a potential dark matter candidate whose masses can span over many orders of magnitude. If they have masses in the $10^{15}-10^{17}$ g range, they can emit sizeable fluxes of MeV neutrinos through evaporation via Hawk