ترغب بنشر مسار تعليمي؟ اضغط هنا

Primordial Universe Inside the Black Hole and Inflation

376   0   0.0 ( 0 )
 نشر من قبل Hassan Firouzjahi
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Hassan Firouzjahi




اسأل ChatGPT حول البحث

We speculate that the early Universe was inside a primordial black hole. The interior of the the black hole is a dS background and the two spacetimes are separated on the surface of black holes event horizon. We argue that this picture provides a natural realization of inflation without invoking the inflaton field. The black hole evaporation by Hawking radiation provides a natural mechanism for terminating inflation so reheating and the hot big bang cosmology starts from the evaporation of black hole to relativistic particles. The quantum gravitational fluctuations at the boundary of black hole generate the nearly scale invariant scalar and tensor perturbations with the ratio of tensor to scalar power spectra at the order of $10^{-3}$. As the black hole evaporates, the radius of its event horizon shrinks and the Hubble expansion rate during inflation increases slowly so the quantum Hawking radiation provides a novel mechanism for the violation of null energy condition in cosmology.



قيم البحث

اقرأ أيضاً

Inflationary scenarios in string theory often involve a large number of light scalar fields, whose presence can enrich the post-inflationary evolution of primordial fluctuations generated during the inflationary epoch. We provide a simple example of such post-inflationary processing within an explicit string-inflationary construction, using a Kahler modulus as the inflaton within the framework of LARGE Volume Type-IIB string flux compactifications. We argue that inflationary models within this broad category often have a selection of scalars that are light enough to be cosmologically relevant, whose contributions to the primordial fluctuation spectrum can compete with those generated in the standard way by the inflaton. These models consequently often predict nongaussianity at a level, f_NL ~ O(10), potentially observable by the Planck satellite, with a bi-spectrum maximized by triangles with squeezed shape in a string realisation of the curvaton scenario. We argue that the observation of such a signal would robustly prefer string cosmologies such as these that predict a multi-field dynamics during the very early universe.
Systems of enhanced memory capacity are subjected to a universal effect of memory burden, which suppresses their decay. In this paper, we study a prototype model to show that memory burden can be overcome by rewriting stored quantum information from one set of degrees of freedom to another one. However, due to a suppressed rate of rewriting, the evolution becomes extremely slow compared to the initial stage. Applied to black holes, this predicts a metamorphosis, including a drastic deviation from Hawking evaporation, at the latest after losing half of the mass. This raises a tantalizing question about the fate of a black hole. As two likely options, it can either become extremely long lived or decay via a new classical instability into gravitational lumps. The first option would open up a new window for small primordial black holes as viable dark matter candidates.
We propose a new model-independent mechanism for producing Primordial Black Holes from a period of multi-field inflation. The required enhancement of primordial fluctuations compared to their value at CMB scales naturally occurs when the inflationary trajectory in the landscape exhibits a limited period of strongly non-geodesic motion. Such trajectories with multiple dynamical fields are motivated by the search for ultraviolet completions of inflation. We study analytically and numerically how the parameters describing the bending impact the primordial fluctuations power spectrum and the mass function of Primordial Black Holes. Our mechanism has the potential of exhibiting unique features accessible to observation through its Primordial Black Hole spectrum and stochastic background of gravitational waves, offering a precious glimpse at the dynamics of inflation in the landscape.
It has recently been suggested that the presence of a plenitude of light axions, an Axiverse, is evidence for the extra dimensions of string theory. We discuss the observational consequences of these axions on astrophysical black holes through the Pe nrose superradiance process. When an axion Compton wavelength is comparable to the size of a black hole, the axion binds to the black hole nucleus forming a gravitational atom in the sky. The occupation number of superradiant atomic levels, fed by the energy and angular momentum of the black hole, grows exponentially. The black hole spins down and an axion Bose-Einstein condensate cloud forms around it. When the attractive axion self-interactions become stronger than the gravitational binding energy, the axion cloud collapses, a phenomenon known in condensed matter physics as Bosenova. The existence of axions is first diagnosed by gaps in the mass vs spin plot of astrophysical black holes. For young black holes the allowed values of spin are quantized, giving rise to Regge trajectories inside the gap region. The axion cloud can also be observed directly either through precision mapping of the near horizon geometry or through gravitational waves coming from the Bosenova explosion, as well as axion transitions and annihilations in the gravitational atom. Our estimates suggest that these signals are detectable in upcoming experiments, such as Advanced LIGO, AGIS, and LISA. Current black hole spin measurements imply an upper bound on the QCD axion decay constant of 2 x 10^17 GeV, while Advanced LIGO can detect signals from a QCD axion cloud with a decay constant as low as the GUT scale. We finally discuss the possibility of observing the gamma-rays associated with the Bosenova explosion and, perhaps, the radio waves from axion-to-photon conversion for the QCD axion.
182 - Marco Scalisi 2019
We study the implications on inflation of an infinite tower of higher-spin states with masses falling exponentially at large field distances, as dictated by the Swampland Distance Conjecture. We show that the Higuchi lower bound on the mass of the to wer automatically translates into an upper bound on the inflaton excursion. Strikingly, the mere existence of all spins in the tower forbids any scalar displacement whatsoever, at arbitrarily small Hubble scales, and it turns out therefore incompatible with inflation. A certain field excursion is allowed only if the tower has a cut-off in spin. Finally, we show that this issue is circumvented in the case of a tower of string excitations precisely because of the existence of such a cut-off, which decreases fast enough in field space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا