ترغب بنشر مسار تعليمي؟ اضغط هنا

First detection of CS masers around a high-mass young stellar object, W51 e2e

58   0   0.0 ( 0 )
 نشر من قبل Adam Ginsburg
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery of maser emission in the two lowest rotational transitions of CS toward the high-mass protostar W51 e2e with ALMA and the JVLA. The masers from CS J=1-0 and J=2-1 are neither spatially nor spectrally coincident (they are separated by ~150 AU and ~30 km/s), but both appear to come from the base of the blueshifted outflow from this source. These CS masers join a growing list of rarely-detected maser transitions that may trace a unique phase in the formation of high-mass protostars.

قيم البحث

اقرأ أيضاً

We present the results of numerically solving the rate equations for the first 31 rotational states of CS in the ground vibrational state to determine the conditions under which the J=1-0, J=2-1 and J=3-2 transitions are inverted to produce maser emi ssion. The essence of our results is that the CS($v=0$) masers are collisionally pumped and that, depending on the spectral energy distribution, dust emission can suppress the masers. Apart from the J=1-0 and J=2-1 masers the calculations also show that the J=3-2 transition can be inverted to produce maser emission. It is found that beaming is necessary to explain the observed brightness temperatures of the recently discovered CS masers in W51 e2e. The model calculations suggest that a CS abundance of a few times $10^{-5}$ and CS($v=0$) column densities of the order $10^{16},mathrm{cm^{-2}}$ are required for these masers. The rarity of the CS masers in high mass star forming regions might be the result of a required high CS abundance as well as due to attenuation of the maser emission inside as well as outside of the hot core.
OTS44 is one of only four free-floating planets known to have a disk. We have previously shown that it is the coolest and least massive known free-floating planet ($sim$12 M$_{rm Jup}$) with a substantial disk that is actively accreting. We have obta ined Band 6 (233 GHz) ALMA continuum data of this very young disk-bearing object. The data shows a clear unresolved detection of the source. We obtained disk-mass estimates via empirical correlations derived for young, higher-mass, central (substellar) objects. The range of values obtained are between 0.07 and 0.63 M$_{oplus}$ (dust masses). We compare the properties of this unique disk with those recently reported around higher-mass (brown dwarfs) young objects in order to infer constraints on its mechanism of formation. While extreme assumptions on dust temperature yield disk-mass values that could slightly diverge from the general trends found for more massive brown dwarfs, a range of sensible values provide disk masses compatible with a unique scaling relation between $M_{rm dust}$ and $M_{*}$ through the substellar domain down to planetary masses.
(abbreviated) We investigate the spatial structure and spectral energy distribution of an edge-on circumstellar disk around an optically invisible young stellar object that is embedded in a dark cloud in the Carina Nebula. Whereas the object was dete cted as an apparently point-like source in earlier infrared observations, only the superb image quality (FWHM ~0.5) of our VLT / HAWK-I data could reveal, for the first time, its peculiar morphology. It consists of a very red point-like central source that is surrounded by a roughly spherical nebula, which is intersected by a remarkable dark lane through the center. We construct the spectral energy distribution of the object from 1 to 870 microns and perform a detailed radiative transfer modeling of the spectral energy distribution and the source morphology. The observed object morphology in the near-IR images clearly suggests a young stellar object that is embedded in an extended, roughly spherical envelope and surrounded by a large circumstellar disk with a diameter of ~5500 AU that is seen nearly edge-on. The radiative transfer modeling shows that the central object is a massive (10-15 Msun) young stellar object. The circumstellar disk has a mass of about 2 Msun. The disk object in Carina is one of the most massive young stellar objects for which a circumstellar disk has been detected so far, and the size and mass of the disk are very large compared to the corresponding values found for most other similar objects.
We report the first detection of a radio-continuum and molecular jet associated with a dominant blue-shifted maser source, G353.273+0.641. A radio jet is extended 3000 au along NW-SE direction. H$_{2}$O masers are found to be clustered in the root of a bipolar radio jet. A molecular jet is detected by thermal SiO ($upsilon$ = 0, $J$ = 2-1) emission. The SiO spectrum is extremely wide (-120 -- +87 km s$^{-1}$) and significantly blue-shift dominated, similar to the maser emission. The observed geometry and remarkable spectral similarity between H$_{2}$O maser and SiO strongly suggests the existence of a maser-scale ($sim$ 340 au) molecular jet that is enclosed by the extended radio jet. We propose a disc-masking scenario as the origin of the strong blue-shift dominance, where an optically thick disc obscures a red-shifted lobe of a compact jet.
Solar-mass stars form via circumstellar disk accretion (disk-mediated accretion). Recent findings indicate that this process is likely episodic in the form of accretion bursts, possibly caused by disk fragmentation. Although it cannot be ruled out th at high-mass young stellar objects (HMYSOs; $M>$8 M$_odot$, $L_{bol}>$5$times$10$^3$ L$_odot$) arise from the coalescence of their low-mass brethren, latest results suggest that they more likely form via disks. Accordingly, disk-mediated accretion bursts should occur. Here we report on the discovery of the first disk-mediated accretion burst from a $sim$20 M$_odot$ HMYSO. Our near-infrared images show the brightening of the central source and its outflow cavities. Near-infrared spectroscopy reveals emission lines typical of accretion bursts in low-mass protostars, but orders of magnitude more luminous. Moreover, the energy released and the inferred mass-accretion rate are also orders of magnitude larger. Our results identify disk accretion as the common mechanism of star formation across the entire stellar mass spectrum.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا