ترغب بنشر مسار تعليمي؟ اضغط هنا

Domain walls and deconfinement: a semiclassical picture of discrete anomaly inflow

76   0   0.0 ( 0 )
 نشر من قبل Erich Poppitz
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the physics of quark deconfinement on domain walls in four-dimensional supersymmetric SU(N) Yang-Mills theory, compactified on a small circle with supersymmetric boundary conditions. We numerically examine the properties of BPS domain walls connecting vacua k units apart. We also determine their electric fluxes and use the results to show that Wilson loops of any nonzero N-ality exhibit perimeter law on all k-walls. Our results confirm and extend, to all N and k, the validity of the semiclassical picture of deconfinement of Anber, Sulejmanpasic and one of us (EP), arXiv:1501.06773, providing a microscopic explanation of mixed 0-form/1-form anomaly inflow.

قيم البحث

اقرأ أيضاً

We study $SU(N_c)$ gauge theories with Dirac fermions in representations ${cal{R}}$ of nonzero $N$-ality, coupled to axions. These theories have an exact discrete chiral symmetry, which has a mixed t Hooft anomaly with general baryon-color-flavor bac kgrounds, called the BCF anomaly in arXiv:1909.09027. The infrared theory also has an emergent $mathbb Z_{N_c}^{(1)}$ $1$-form center symmetry. We show that the BCF anomaly is matched in the infrared by axion domain walls. We argue that $mathbb Z_{N_c}^{(1)}$ is spontaneously broken on axion domain walls, so that nonzero $N$-ality Wilson loops obey the perimeter law and probe quarks are deconfined on the walls. We give further support to our conclusion by using a calculable small-circle compactification to study the multi-scale structure of the axion domain walls and the microscopic physics of deconfinement on their worldvolume.
We study the chiral effective theory in the presence of QCD vortices. Gauge invariance requires novel terms from vortex singularities in the gauged Wess-Zumino-Witten action, which incorporate anomaly induced currents along the vortices. We examine t hese terms for systems with QCD axial domain-walls bounded by vortices (vortons) under magnetic fields. We discuss how the baryon and the electric charge conservations are satisfied in these systems through interplay between domain-walls and vortices, which manifests Callan-Harveys mechanism of the anomaly inflow.
In 1985, Callan and Harvey showed a view of gauge anomaly as a missing current into an extra-dimension, and the total contribution, including the Chern-Simons current in the bulk, is conserved. However in their computation, the edge and bulk contribu tions are separately evaluated and their cross correlations, which should be relevant at boundary, are simply ignored. This issue has been solved in many approaches. In this work, we revisit this issue with a complete set of eigenstates of free domain-wall Hamiltonian and give the systematic evaluation, easy to take in the higher mass correction and extend to the higher dimension.
We study the discrete chiral- and center-symmetry t Hooft anomaly matching in the charge-$q$ two-dimensional Schwinger model. We show that the algebra of the discrete symmetry operators involves a central extension, implying the existence of $q$ vacu a, and that the chiral and center symmetries are spontaneously broken. We then argue that an axial version of the $q$$=$$2$ model appears in the worldvolume theory on domain walls between center-symmetry breaking vacua in the high-temperature $SU(2)$ ${cal N}$$=$$1$ super-Yang-Mills theory and that it inherits the discrete t Hooft anomalies of the four-dimensional bulk. The Schwinger model results suggest that the high-temperature domain wall exhibits a surprisingly rich structure: it supports a non-vanishing fermion condensate and perimeter law for spacelike Wilson loops, thus mirroring many properties of the strongly coupled four-dimensional low-temperature theory. We also discuss generalizations to theories with multiple adjoint fermions and possible lattice tests.
We show that axion models with the domain wall number $k$ in $(3+1)$ dimensions, i.e., periodic scalar field theories admitting $k$ axion domain walls, exhibit an emergent ${mathbb Z}_k$ 3-form symmetry for $k >1$ in addition to a conventional ${math bb Z}_k$ 0-form symmetry. The emergent 3-form symmetry is explicitly shown by establishing a low-energy dual transformation between the scalar field theory and a 3-form gauge theory. We further argue that the emergent 3-form symmetry is spontaneously broken, and the breaking pattern is so-called the type-B spontaneous symmetry breaking. We discuss similar and different points between the phase admitting the domain walls and topologically ordered phases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا