ﻻ يوجد ملخص باللغة العربية
The Dresselhaus and Rashba effects are well-known phenomena in solid-state physics, in which spin-orbit coupling (SOC) splits spin-up and spin-down energy bands of nonmagnetic non-centrosymmetric crystals. Here, we discover a new phenomenon, dubbed as band splitting with vanishing spin polarizations (BSVSP), in which, as usual, SOC splits the energy bands in nonmagnetic non-centrosymmetric systems; surprisingly, however, both split bands show no net spin polarization along certain high-symmetry lines in the Brillouin zone. In order to rationalize this phenomenon, we propose a new classification of point groups into pseudo-polar and non-pseudo-polar groups. By means of first-principles simulations, we demonstrate that BSVSP can take place in both symmorphic (e.g., bulk GaAs) and non-symmorphic systems (e.g., two dimensional ferroelectric SnTe). Furthermore, we propose a novel linear magnetoelectric coupling in reciprocal space, which could be employed to tune the spin polarization with an external electric field. The BSVSP effect and its manipulation could therefore pave a new way to novel spintronic devices.
We use a recently developed self-consistent GW approximation to present first principles calculations of the conduction band spin splitting in GaAs under [110] strain. The spin orbit interaction is taken into account as a perturbation to the scalar r
The electronic structure of bulk GaAs$_{1-x}$Bi$_x$ systems for different atomic configurations and Bi concentrations is calculated using density functional theory. The results show a Bi-induced splitting between the light-hole and heavy-hole bands a
Spin-orbit splitting of conduction band in HgTe quantum wells was studied experimentally. In order to recognize the role of different mechanisms, we carried out detailed measurements of the Shubnikov-de Haas oscillations in gated structures with a qu
We report normal and superconducting properties of the Rashba-type noncentrosymmetric com- pound CaIrSi3, using single crystalline samples with nearly 100% superconducting volume fraction. The electronic density of states revealed by the hard x-ray p
The realization of multifunctional two-dimensional (2D) materials is fundamentally intriguing, such as combination of piezoelectricity with topological insulating phase or ferromagnetism. In this work, a Janus monolayer $mathrm{SrAlGaSe_4}$ is built