ترغب بنشر مسار تعليمي؟ اضغط هنا

Band splitting with vanishing spin polarizations in noncentrosymmetric crystals

98   0   0.0 ( 0 )
 نشر من قبل Kai Liu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Dresselhaus and Rashba effects are well-known phenomena in solid-state physics, in which spin-orbit coupling (SOC) splits spin-up and spin-down energy bands of nonmagnetic non-centrosymmetric crystals. Here, we discover a new phenomenon, dubbed as band splitting with vanishing spin polarizations (BSVSP), in which, as usual, SOC splits the energy bands in nonmagnetic non-centrosymmetric systems; surprisingly, however, both split bands show no net spin polarization along certain high-symmetry lines in the Brillouin zone. In order to rationalize this phenomenon, we propose a new classification of point groups into pseudo-polar and non-pseudo-polar groups. By means of first-principles simulations, we demonstrate that BSVSP can take place in both symmorphic (e.g., bulk GaAs) and non-symmorphic systems (e.g., two dimensional ferroelectric SnTe). Furthermore, we propose a novel linear magnetoelectric coupling in reciprocal space, which could be employed to tune the spin polarization with an external electric field. The BSVSP effect and its manipulation could therefore pave a new way to novel spintronic devices.


قيم البحث

اقرأ أيضاً

We use a recently developed self-consistent GW approximation to present first principles calculations of the conduction band spin splitting in GaAs under [110] strain. The spin orbit interaction is taken into account as a perturbation to the scalar r elativistic hamiltonian. These are the first calculations of conduction band spin splitting under deformation based on a quasiparticle approach; and because the self-consistent GW scheme accurately reproduces the relevant band parameters, it is expected to be a reliable predictor of spin splittings. We also discuss the spin relaxation time under [110] strain and show that it exhibits an in-plane anisotropy, which can be exploited to obtain the magnitude and sign of the conduction band spin splitting experimentally.
The electronic structure of bulk GaAs$_{1-x}$Bi$_x$ systems for different atomic configurations and Bi concentrations is calculated using density functional theory. The results show a Bi-induced splitting between the light-hole and heavy-hole bands a t the $Gamma$-point. We find a good agreement between our calculated splittings and experimental data. The magnitude of the splitting strongly depends on the local arrangement of the Bi atoms but not on the uni-directional lattice constant of the supercell. The additional influence of external strain due to epitaxial growth on GaAs substrates is studied by fixing the in-plane lattice constants.
Spin-orbit splitting of conduction band in HgTe quantum wells was studied experimentally. In order to recognize the role of different mechanisms, we carried out detailed measurements of the Shubnikov-de Haas oscillations in gated structures with a qu antum well widths from $8$ to $18$ nm over a wide range of electron density. With increasing electron density controlled by the gate voltage, splitting of the maximum of the Fourier spectrum $f_0$ into two components $f_1$ and $f_2$ and the appearance of the low-frequency component $f_3$ was observed. Analysis of these results shows that the components $f_1$ and $f_2$ give the electron densities $n_1$ and $n_2$ in spin-orbit split subbands while the $f_3$ component results from magneto-intersubband oscillations so that $f_3=f_1 - f_2$. Comparison of these data with results of self-consistent calculations carried out within the framework of four-band emph{kP}-model shows that a main contribution to spin-orbit splitting comes from the Bychkov-Rashba effect. Contribution of the interface inversion asymmetry to the splitting of the conduction band turns out to be four-to-five times less than that for the valence band in the same structures.
We report normal and superconducting properties of the Rashba-type noncentrosymmetric com- pound CaIrSi3, using single crystalline samples with nearly 100% superconducting volume fraction. The electronic density of states revealed by the hard x-ray p hotoemission spectroscopy can be well explained by the relativistic first-principle band calculation. This indicates that strong spin-orbit interaction indeed affects the electronic states of this compound. The obtained H - T phase diagram exhibits only approximately 10% anisotropy, indicating that the superconducting properties are almost three dimensional. Nevertheless, strongly anisotropic vortex pinning is observed.
The realization of multifunctional two-dimensional (2D) materials is fundamentally intriguing, such as combination of piezoelectricity with topological insulating phase or ferromagnetism. In this work, a Janus monolayer $mathrm{SrAlGaSe_4}$ is built from 2D $mathrm{MA_2Z_4}$ family with dynamic, mechanical and thermal stabilities, which is piezoelectric due to lacking inversion symmetry. The unstrained $mathrm{SrAlGaSe_4}$ monolayer is a narrow gap normal insulator (NI) with spin orbital coupling (SOC). However, the NI to topological insulator (TI) phase transition can be induced by the biaxial strain, and a piezoelectric quantum spin Hall insulator (PQSHI) can be achieved. More excitingly, the phase transformation point is only about 1.01 tensile strain, and nontrivial band topology can hold until considered 1.16 tensile strain. Moreover, a Rashba spin splitting in the conduction bands can exit in PQSHI due to the absence of a horizontal mirror symmetry and the presence of SOC. For monolayer $mathrm{SrAlGaSe_4}$, both in-plane and much weak out-of-plane piezoelectric polarizations can be induced with a uniaxial strain applied. The calculated piezoelectric strain coefficients $d_{11}$ and $d_{31}$ of monolayer $mathrm{SrAlGaSe_4}$ are -1.865 pm/V and -0.068 pm/V at 1.06 tensile strain as a representative TI. In fact, many PQSHIs can be realized from 2D $mathrm{MA_2Z_4}$ family. To confirm that, similar to $mathrm{SrAlGaSe_4}$, the coexistence of piezoelectricity and topological orders can be realized by strain (about 1.04 tensile strain) in the $mathrm{CaAlGaSe_4}$ monolayer. Our works suggest that Janus monolayer $mathrm{SrAlGaSe_4}$ is a pure 2D system for PQSHI, enabling future studies exploring the interplay between piezoelectricity and topological orders, which can lead to novel applications in electronics and spintronics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا