ﻻ يوجد ملخص باللغة العربية
Using the ideas from the BPS/CFT correspondence, we give an explicit recursive formula for computing supersymmetric Wilson loop averages in 3d $mathcal{N}=2$ Yang-Mills-Chern-Simons $U(N)$ theory on the squashed sphere $S^3_b$ with one adjoint chiral and two antichiral fundamental multiplets, for specific values of Chern-Simons level $kappa_2$ and Fayet-Illiopoulos parameter $kappa_1$. For these values of $kappa_1$ and $kappa_2$ the north and south pole turn out to be completely independent, and therefore Wilson loop averages factorize into answers for the two constituent $D^2 times S^1$ theories. In particular, our formula provides results for the theory on the round sphere when the squashing is removed.
We show how q-Virasoro constraints can be derived for a large class of (q,t)-deformed eigenvalue matrix models by an elementary trick of inserting certain q-difference operators under the integral, in complete analogy with full-derivative insertions
The Virasoro constraints play the important role in the study of matrix models and in understanding of the relation between matrix models and CFTs. Recently the localization calculations in supersymmetric gauge theories produced new families of matri
We revisit the Virasoro constraints and explore the relation to the Hirota bilinear equations. We furthermore investigate and provide the solution to non-homogeneous Virasoro constraints, namely those coming from matrix models whose domain of integra
We give a short introduction to and a partial review of the work on the calculation of Wilson loops and $Qbar Q$-potentials via the conjectured AdS/CFT duality. Included is a discussion of the relative weight of the stringy correction to the target s
There is growing evidence that on-shell gluon scattering amplitudes in planar N=4 SYM theory are equivalent to Wilson loops evaluated over contours consisting of straight, light-like segments defined by the momenta of the external gluons. This equiva