ﻻ يوجد ملخص باللغة العربية
In this paper, we derive regular criteria via pressure or gradient of the velocity in Lorentz spaces to the 3D Navier-Stokes equations. It is shown that a Leray-Hopf weak solution is regular on $(0,T]$ provided that either the norm $|Pi|_{L^{p,infty}(0,T; L ^{q,infty}(mathbb{R}^{3}))} $ with $ {2}/{p}+{3}/{q}=2$ $({3}/{2}<q<infty)$ or $| ablaPi|_{L^{p,infty}(0,T; L ^{q,infty}(mathbb{R}^{3}))} $ with $ {2}/{p}+{3}/{q}=3$ $(1<q<infty)$ is small. This gives an affirmative answer to a question proposed by Suzuki in [26, Remark 2.4, p.3850]. Moreover, regular conditions in terms of $ abla u$ obtained here generalize known ones to allow the time direction to belong to Lorentz spaces.
In this paper, we are concerned with regularity of suitable weak solutions of the 3D Navier-Stokes equations in Lorentz spaces. We obtain $varepsilon$-regularity criteria in terms of either the velocity, the gradient of the velocity, the vorticity, o
Several types of new regularity criteria for Leray-Hopf weak solutions $u$ to the 3D Navier-Stokes equations are obtained. Some of them are based on the third component $u_3$ of velocity under Prodi-Serrin index condition, another type is in terms of
We establish several boundary $varepsilon$-regularity criteria for suitable weak solutions for the 3D incompressible Navier-Stokes equations in a half cylinder with the Dirichlet boundary condition on the flat boundary. Our proofs are based on delica
In this paper, we derive several new sufficient conditions of non-breakdown of strong solutions for for both the 3D heat-conducting compressible Navier-Stokes system and nonhomogeneous incompressible Navier-Stokes equations. First, it is shown that t
Several regularity criterions of Leray-Hopf weak solutions $u$ to the 3D Navier-Stokes equations are obtained. The results show that a weak solution $u$ becomes regular if the gradient of velocity component $ abla_{h}{u}$ (or $ abla{u_3}$) satisfies