ﻻ يوجد ملخص باللغة العربية
We establish several boundary $varepsilon$-regularity criteria for suitable weak solutions for the 3D incompressible Navier-Stokes equations in a half cylinder with the Dirichlet boundary condition on the flat boundary. Our proofs are based on delicate iteration arguments and interpolation techniques. These results extend and provide alternative proofs for the earlier interior results by Vasseur [18], Choi-Vasseur [2], and Phuc-Guevara [6].
In this paper, we are concerned with regularity of suitable weak solutions of the 3D Navier-Stokes equations in Lorentz spaces. We obtain $varepsilon$-regularity criteria in terms of either the velocity, the gradient of the velocity, the vorticity, o
Several types of new regularity criteria for Leray-Hopf weak solutions $u$ to the 3D Navier-Stokes equations are obtained. Some of them are based on the third component $u_3$ of velocity under Prodi-Serrin index condition, another type is in terms of
In this article, we establish sufficient conditions for the regularity of solutions of Navier-Stokes equations based on one of the nine entries of the gradient tensor. We improve the recently results of C.S. Cao, E.S. Titi (Arch. Rational Mech.Anal.
We consider suitable weak solutions of the incompressible Navier--Stokes equations in two cases: the 4D time-dependent case and the 6D stationary case. We prove that up to the boundary, the two-dimensional Hausdorff measure of the set of singular points is equal to zero in both cases.
Several regularity criterions of Leray-Hopf weak solutions $u$ to the 3D Navier-Stokes equations are obtained. The results show that a weak solution $u$ becomes regular if the gradient of velocity component $ abla_{h}{u}$ (or $ abla{u_3}$) satisfies