ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonlinear Quasi-Synchronous Multi User Chirp Spread Spectrum Signaling

43   0   0.0 ( 0 )
 نشر من قبل Nozhan Hosseini
 تاريخ النشر 2019
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

Multi user orthogonal chirp spread spectrum (OCSS) can improve the spectral inefficiency of chirp spread spectrum (CSS) but is only feasible with perfect synchronism and without any channel dispersion. Asynchronism, channel dispersion, or unexpectedly large Doppler shifts can cause multiple access interference (MAI), which degrades performance. Conditions with small timing offsets we term quasi-synchronous (QS). In this paper, we propose two new sets of nonlinear chirps to improve CSS system performance in QS conditions. We analytically and numerically evaluate cross-correlation distributions. We also derive the bit error probability for Binary CSS analytically and validate our theoretical result with both numerical and simulation results; our error probability expression is applicable to any binary time-frequency (TF) chirp waveform. Finally, we show that in QS conditions our two new nonlinear chirp designs outperform the classical linear chirp and all existing nonlinear chirps from the literature. To complete our analysis, we demonstrate that our nonlinear CSS designs outperform existing chirps in two realistic (empirically modeled) dispersive air to ground channels.



قيم البحث

اقرأ أيضاً

In this paper, we investigate the use of chirp spread spectrum signaling over air-ground channels. This includes evaluation of not only the traditional linear chirp, but also of a new chirp signal format we have devised for multiple access applicatio ns. This new format is more practical than prior multi-user chirp systems in the literature, because we allow for imperfect synchronism. Specifically we evaluate multi-user chirp signaling over air-ground channels in a quasi-synchronous condition. The air-ground channels we employ are models based upon an extensive NASA measurement campaign. We show that our new signaling scheme outperforms the classic linear chirp in these air-ground settings.
In this study, we propose a framework for chirp-based communications by exploiting discrete Fourier transform-spread orthogonal frequency division multiplexing (DFT-s-OFDM). We show that a well-designed frequency-domain spectral shaping (FDSS) filter for DFT-s-OFDM can convert its single-carrier nature to a linear combination of chirps circularly translated in the time domain. Also, by exploiting the properties of the Fourier series and Bessel function of the first kind, we analytically obtain the FDSS filter for an arbitrary chirp. We theoretically show that the chirps with low ripples in the frequency domain result in a lower bit-error ratio (BER) via less noise enhancement. We also address the noise enhancement by exploiting the repetitions in the frequency. The proposed framework offers a new way to efficiently synthesize chirps that can be used in Internet-of-Things (IoT), dual-function radar and communication (DFRC) or wireless sensing applications with existing DFT-s-OFDM transceivers.
In this paper, we investigate multi user chirp spread spectrum with noncoherent detection as a continuation of our work on coherent detection in [1]. We derive the analytical bit error ratio (BER) expression for binary chirp spread spectrum (BCSS) in the presence of multiple access interference (MAI) caused by correlation with other user signals because of either asynchronism or Doppler shifts, or both, and validate with simulations. To achieve this we analyze the signal cross correlations, and compare traditional linear chirps with our recently-proposed nonlinear chirps introduced in [1] and with other nonlinear chirps from the literature. In doing so we illustrate the superior performance of our new nonlinear chirp designs in these practical conditions, for the noncoherent counterpart of [1].
Multi-user multi-armed bandits have emerged as a good model for uncoordinated spectrum access problems. In this paper we consider the scenario where users cannot communicate with each other. In addition, the environment may appear differently to diff erent users, ${i.e.}$, the mean rewards as observed by different users for the same channel may be different. With this setup, we present a policy that achieves a regret of $O (log{T})$. This paper has been accepted at Asilomar Conference on Signals, Systems, and Computers 2019.
Large antenna arrays and high-frequency bands are two key features of future wireless communication systems. The combination of large-scale antennas with high transmission frequencies often results in the communicating devices operating in the near-f ield (Fresnel) region. In this paper, we study the potential of beam focusing, feasible in near-field operation, in facilitating high-rate multi-user downlink multiple-input multiple-output (MIMO) systems. As the ability to achieve beam focusing is dictated by the transmit antenna, we study near-field signaling considering different antenna structures, including fully-digital architectures, hybrid phase shifter-based precoders, and the emerging dynamic metasurface antenna (DMA) architecture for massive MIMO arrays. We first provide a mathematical model to characterize near-field wireless channels as well as the transmission pattern for the considered antenna architectures. Then, we formulate the beam focusing problem for the goal of maximizing the achievable sum-rate in multi-user networks. We propose efficient solutions based on the sum-rate maximization task for fully-digital, (phase shifters based-) hybrid and DMA architectures. Simulation results show the feasibility of the proposed beam focusing scheme for both single- and multi-user scenarios. In particular, the designed focused beams are such that users residing at the same angular direction can communicate reliably without interfering with each other, which is not achievable using conventional far-field beam steering.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا