ﻻ يوجد ملخص باللغة العربية
The timescales of many physical, chemical, and biological processes are determined by first passage times (FPTs) of diffusion. The overwhelming majority of FPT research studies the time it takes a single diffusive searcher to find a target. However, the more relevant quantity in many systems is the time it takes the fastest searcher to find a target from a large group of searchers. This fastest FPT depends on extremely rare events and has a drastically faster timescale than the FPT of a given single searcher. In this work, we prove a simple explicit formula for every moment of the fastest FPT. The formula is remarkably universal, as it holds for $d$-dimensional diffusion processes (i) with general space-dependent diffusivities and force fields, (ii) on Riemannian manifolds, (iii) in the presence of reflecting obstacles, and (iv) with partially absorbing targets. Our results rigorously confirm, generalize, correct, and unify various conjectures and heuristics about the fastest FPT.
Many events in biology are triggered when a diffusing searcher finds a target, which is called a first passage time (FPT). The overwhelming majority of FPT studies have analyzed the time it takes a single searcher to find a target. However, the more
The time it takes the fastest searcher out of $Ngg1$ searchers to find a target determines the timescale of many physical, chemical, and biological processes. This time is called an extreme first passage time (FPT) and is typically much faster than t
Consider first passage percolation with identical and independent weight distributions and first passage time ${rm T}$. In this paper, we study the upper tail large deviations $mathbb{P}({rm T}(0,nx)>n(mu+xi))$, for $xi>0$ and $x eq 0$ with a time co
We study the distribution of first-passage functionals ${cal A}= int_0^{t_f} x^n(t), dt$, where $x(t)$ is a Brownian motion (with or without drift) with diffusion constant $D$, starting at $x_0>0$, and $t_f$ is the first-passage time to the origin. I
We consider a simplified model of the continuous double auction where prices are integers varying from $1$ to $N$ with limit orders and market orders, but quantity per order limited to a single share. For this model, the order process is equivalent t