ﻻ يوجد ملخص باللغة العربية
We consider a simplified model of the continuous double auction where prices are integers varying from $1$ to $N$ with limit orders and market orders, but quantity per order limited to a single share. For this model, the order process is equivalent to two $M/M/1$ queues. We study the behaviour of the auction in the low-traffic limit where limit orders are immediately transformed into market orders. In this limit, the distribution of prices can be computed exactly and gives a reasonable approximation of the price distribution when the ratio between the rate of order arrivals and the rate of order executions is below $1/2$. This is further confirmed by the analysis of the first passage time in $1$ or $N$.
We study a phenomenological model for the continuous double auction, equivalent to two independent $M/M/1$ queues. The continuous double auction defines a continuous-time random walk for trade prices. The conditions for ergodicity of the auction are
Many events in biology are triggered when a diffusing searcher finds a target, which is called a first passage time (FPT). The overwhelming majority of FPT studies have analyzed the time it takes a single searcher to find a target. However, the more
The time it takes the fastest searcher out of $Ngg1$ searchers to find a target determines the timescale of many physical, chemical, and biological processes. This time is called an extreme first passage time (FPT) and is typically much faster than t
In this paper we study first-passge percolation models on Delaunay triangulations. We show a sufficient condition to ensure that the asymptotic value of the rescaled first-passage time, called the time constant, is strictly positive and derive some u
The first-passage-time problem for a Brownian motion with alternating infinitesimal moments through a constant boundary is considered under the assumption that the time intervals between consecutive changes of these moments are described by an altern