ترغب بنشر مسار تعليمي؟ اضغط هنا

A novel approach for the analysis of the geometry involved in determining light curves of pulsars

47   0   0.0 ( 0 )
 نشر من قبل Diego F. Torres
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we introduce the use of the differential geometry Frenet-Serret equations to describe a magnetic line in a pulsar magnetosphere. These equations, which need to be solved numerically, fix the magnetic line in terms of their tangent, normal, and binormal vectors at each position, given assumptions on the radius of curvature and torsion. Once the representation of the magnetic line is defined, we provide the relevant set of transformations between reference frames; the ultimate aim is to express the map of the emission directions in the star co-rotating frame. In this frame, an emission map can be directly read as a light curve seen by observers located at a certain fixed angle with respect to the rotational axis. We provide a detailed step-by-step numerical recipe to obtain the emission map for a given emission process, and give a set of simplified benchmark tests. Key to our approach is that it offers a setting to achieve an effective description of the systems geometry {it together} with the radiation spectrum. This allows to compute multi-frequency light curves produced by a specific radiation process (and not just geometry) in the pulsar magnetosphere, and intimately relates with averaged observables such as the spectral energy distribution.



قيم البحث

اقرأ أيضاً

We collect new and archival optical observations of nine black-widow millisecond pulsar binaries. New measurements include direct imaging with the Keck, Gemini-S, MDM, and LCO 2~m telescopes. This is supplemented by synthesized colors from Keck long- slit spectra. Four black-widow optical companions are presented here for the first time. Together these data provide multicolor photometry covering a large fraction of the orbital phase. We fit these light curves with a direct (photon) heating model using a version of the ICARUS light-curve modeling code. The fits provide distance and fill-factor estimates, inclinations, and heating powers. We compare the heating powers with the observed GeV luminosities, noting that the ratio is sensitive to pulsar distance and to the gamma-ray beaming. We make a specific correction for outer-gap model beams, but even then some sources are substantially discrepant, suggesting imperfect beaming corrections and/or errors in the fit distance. The fits prefer large metal abundance for half of the targets, a reasonable result for these wind-stripped secondaries. The companion radii indicate substantial Roche-lobe filling, $f_c approx 0.7-1$ except for PSR J0952$-$0607, which with $f_c< 0.5$ has a companion density $rho approx 10,{rm g,cm^{-3}}$, suggesting unusual evolution. We note that the direct-heating fits imply large heating powers and rather small inclinations, and we speculate that unmodeled effects can introduce such bias.
In this paper, we tackle the problem of measuring similarity among graphs that represent real objects with noisy data. To account for noise, we relax the definition of similarity using the maximum weighted co-$k$-plex relaxation method, which allows dissimilarities among graphs up to a predetermined level. We then formulate the problem as a novel quadratic unconstrained binary optimization problem that can be solved by a quantum annealer. The context of our study is molecular similarity where the presence of noise might be due to regular errors in measuring molecular features. We develop a similarity measure and use it to predict the mutagenicity of a molecule. Our results indicate that the relaxed similarity measure, designed to accommodate the regular errors, yields a higher prediction accuracy than the measure that ignores the noise.
Stripped-envelope (SE) supernovae (SNe) include H-poor (Type IIb), H-free (Type Ib) and He-free (Type Ic) events thought to be associated with the deaths of massive stars. The exact nature of their progenitors is a matter of debate. Here we present t he analysis of the light curves of 34 SE SNe published by the Carnegie Supernova Project (CSP-I), which are unparalleled in terms of photometric accuracy and wavelength range. Light-curve parameters are estimated through the fits of an analytical function and trends are searched for among the resulting fit parameters. We found a tentative correlation between the peak absolute $B$-band magnitude and $Delta m_{15}(B)$, as well as a correlation between the late-time linear slope and $Delta m_{15}$. Making use of the full set of optical and near-IR photometry, combined with robust host-galaxy extinction corrections, bolometric light curves are constructed and compared to both analytic and hydrodynamical models. From the hydrodynamical models we obtained ejecta masses of $1.1-6.2$ $M_{odot}$, $^{56}$Ni masses of $0.03-0.35$ $M_{odot}$, and explosion energies (excluding two SNe Ic-BL) of $0.25-3.0times10^{51}$ erg. Our analysis indicates that adopting $kappa = 0.07$ cm$^{2}$ g$^{-1}$ as the mean opacity serves to be a suitable assumption when comparing Arnett-model results to those obtained from hydrodynamical calculations. We also find that adopting He I and O I line velocities to infer the expansion velocity in He-rich and He-poor SNe, respectively, provides ejecta masses relatively similar to those obtained by using the Fe II line velocities. The inferred ejecta masses are compatible with intermediate mass ($M_{ZAMS} leq 20$ $M_{odot}$) progenitor stars in binary systems for the majority of SE SNe. Furthermore, the majority of our SNe is affected by significant mixing of $^{56}$Ni, particularly in the case of SNe Ic.
The Fermi Large Area Telescope (LAT) has recently reported the detection of pulsed gamma-rays from 6 young pulsars (J0631+1036, J0659+1414, J0742-2822, J1420-6048, J1509-5850, and J1718-3825), all exhibiting single-peaked pulse profiles (Weltevrede e t al., 2010). High-quality radio polarization data are also available for 5 of these pulsars, allowing derivation of constraints on their viewing geometries. We obtain independent constraints on the viewing geometries of these pulsars by using a geometric pulsar emission code to model the Fermi LAT and radio light curves. We find fits for the magnetic inclination and observer angles alpha and zeta with typical errors of ~ 5deg. Our results are generally consistent with those obtained by Weltevrede et al. (2010), although we do find differences in some cases. Our model may lastly provide a framework to constrain the radio emission altitude.
The Large Area Telescope aboard the Fermi spacecraft has detected more than 200 $gamma$-ray pulsars since its launch in 2008. By concurrently fitting standard geometric model light curves onto Fermi and radio data, researchers have constrained the in clination and observer angles of a number of pulsars. At first this was done by comparing observed and modelled light curves by eye, and later via statistical approaches. We fit modelled light curves of 16 pulsars to radio and $gamma$-ray data by optimising a custom test statistic that we have developed for combining light curves across the two wavebands, taking their disparate errors into account. We present geometrical constraints found using this process, and compare them with results found by eye or using other statistical methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا