ترغب بنشر مسار تعليمي؟ اضغط هنا

Geometric modelling of radio and gamma-ray light curves of 6 Fermi LAT pulsars

56   0   0.0 ( 0 )
 نشر من قبل Albertus Seyffert mr
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Fermi Large Area Telescope (LAT) has recently reported the detection of pulsed gamma-rays from 6 young pulsars (J0631+1036, J0659+1414, J0742-2822, J1420-6048, J1509-5850, and J1718-3825), all exhibiting single-peaked pulse profiles (Weltevrede et al., 2010). High-quality radio polarization data are also available for 5 of these pulsars, allowing derivation of constraints on their viewing geometries. We obtain independent constraints on the viewing geometries of these pulsars by using a geometric pulsar emission code to model the Fermi LAT and radio light curves. We find fits for the magnetic inclination and observer angles alpha and zeta with typical errors of ~ 5deg. Our results are generally consistent with those obtained by Weltevrede et al. (2010), although we do find differences in some cases. Our model may lastly provide a framework to constrain the radio emission altitude.

قيم البحث

اقرأ أيضاً

The Large Area Telescope (LAT) on the Fermi satellite is the first gamma-ray instrument to discover pulsars directly via their gamma-ray emission. Roughly one third of the 117 gamma-ray pulsars detected by the LAT in its first three years were discov ered in blind searches of gamma-ray data and most of these are undetectable with current radio telescopes. I review some of the key LAT results and highlight the specific challenges faced in gamma-ray (compared to radio) searches, most of which stem from the long, sparse data sets and the broad, energy-dependent point-spread function (PSF) of the LAT. I discuss some ongoing LAT searches for gamma-ray millisecond pulsars (MSPs) and gamma-ray pulsars around the Galactic Center. Finally, I outline the prospects for future gamma-ray pulsar discoveries as the LAT enters its extended mission phase, including advantages of a possible modification of the LAT observing profile.
The Large Area Telescope (LAT) on board the Fermi satellite has detected ~120 pulsars above 100 MeV. While most gamma-ray pulsars have spectra that are well modeled by a power law with an exponential cut-off at around a few GeV, some show significant pulsed high-energy (HE, >10 GeV) emission. I present a study of HE emission from LAT gamma-ray pulsars and discuss prospects for the detection of pulsations at very high energies (VHE, >100 GeV) with ground-based instruments.
163 - A. S. Seyffert 2014
Guillemot et al. recently reported the discovery of $gamma$-ray pulsations from the 22.7ms pulsar (pulsar A) in the famous double pulsar system J0737-3039A/B. The $gamma$-ray light curve (LC) of pulsar A has two peaks separated by approximately half a rotation, and these are non-coincident with the observed radio and X-ray peaks. This suggests that the $gamma$-ray emission originates in a part of the magnetosphere distinct from where the radio and X-ray radiation is generated. Thus far, three different methods have been applied to constrain the viewing geometry of pulsar A (its inclination and observer angles $alpha$ and $zeta$): geometric modelling of the radio and $gamma$-ray light curves, modelling of the position angle sweep in phase seen in the radio polarisation data, and independent studies of the time evolution of the radio pulse profile of pulsar A. These three independent, complementary methods have yielded consistent results: pulsar As rotation axis is likely perpendicular to the orbital plane of the binary system, and its magnetic axis close to lying in the orbital plane (making this pulsar an orthogonal rotator). The observer is furthermore observing emission close to the magnetic axis. Thus far, however, current models could not reproduce all the characteristics of the radio and $gamma$-ray light curves, specifically the large radio-to-$gamma$ phase lag. In this paper we discuss some preliminary modelling attempts to address this problem, and offer ideas on how the LC fits may be improved by adapting the standard geometric models in order to reproduce the profile positions more accurately.
The Large Area Telescope (LAT) on Fermi has detected ~150 gamma-ray pulsars, about a third of which were discovered in blind searches of the $gamma$-ray data. Because the angular resolution of the LAT is relatively poor and blind searches for pulsars (especially millisecond pulsars, MSPs) are very sensitive to an error in the position, one must typically scan large numbers of locations. Identifying plausible X-ray counterparts of a putative pulsar drastically reduces the number of trials, thus improving the sensitivity of pulsar blind searches with the LAT. I discuss our ongoing program of Swift, XMM-Newton, and Chandra observations of LAT unassociated sources in the context of our blind searches for gamma-ray pulsars.
74 - P. S. Ray , M. Kerr , D. Parent 2010
We present precise phase-connected pulse timing solutions for 16 gamma-ray-selected pulsars recently discovered using the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope plus one very faint radio pulsar (PSR J1124-5916) that is more effectively timed with the LAT. We describe the analysis techniques including a maximum likelihood method for determining pulse times of arrival from unbinned photon data. A major result of this work is improved position determinations, which are crucial for multi-wavelength follow up. For most of the pulsars, we overlay the timing localizations on X-ray images from Swift and describe the status of X-ray counterpart associations. We report glitches measured in PSRs J0007+7303, J1124-5916, and J1813-1246. We analyze a new 20 ks Chandra ACIS observation of PSR J0633+0632 that reveals an arcminute-scale X-ray nebula extending to the south of the pulsar. We were also able to precisely localize the X-ray point source counterpart to the pulsar and find a spectrum that can be described by an absorbed blackbody or neutron star atmosphere with a hard powerlaw component. Another Chandra ACIS image of PSR J1732-3131 reveals a faint X-ray point source at a location consistent with the timing position of the pulsar. Finally, we present a compilation of new and archival searches for radio pulsations from each of the gamma-ray-selected pulsars as well as a new Parkes radio observation of PSR J1124-5916 to establish the gamma-ray to radio phase offset.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا