ﻻ يوجد ملخص باللغة العربية
A combinatorial structure, $mathcal{F}$, with counting sequence ${a_n}_{nge 0}$ and ordinary generating function $G_mathcal{F}=sum_{nge0} a_n x^n$, is positive algebraic if $G_mathcal{F}$ satisfies a polynomial equation $G_mathcal{F}=sum_{k=0}^N p_k(x),G_mathcal{F}^k $ and $p_k(x)$ is a polynomial in $x$ with non-negative integer coefficients. We show that every such family is associated with a normed $mathbf{n}$-magma. An $mathbf{n}$-magma with $mathbf{n}=(n_1,dots, n_k)$ is a pair $mathcal{M}$ and $mathcal{F}$ where $mathcal{M}$ is a set of combinatorial structures and $mathcal{F}$ is a tuple of $n_i$-ary maps $f_i,:,mathcal{M}^{n_i}to mathcal{M}$. A norm is a super-additive size map $||cdot||,:, mathcal{M}to mathbb{N} $. If the normed $mathbf{n}$-magma is free then we show there exists a recursive, norm preserving, universal bijection between all positive algebraic families $mathcal{F}_i$ with the same counting sequence. A free $mathbf{n}$-magma is defined using a universal mapping principle. We state a theorem which provides a combinatorial method of proving if a particular $mathbf{n}$-magma is free. We illustrate this by defining several $mathbf{n}$-magmas: eleven $(1,1)$-magmas (the Fibonacci families), seventeen $(1,2)$-magmas (nine Motzkin and eight Schroder families) and seven $(3)$-magmas (the Fuss-Catalan families). We prove they are all free and hence obtain a universal bijection for each $mathbf{n}$. We also show how the $mathbf{n}$-magma structure manifests as an embedded bijection.
We introduce a new concept of permutation avoidance pattern called hatted pattern, which is a natural generalization of the barred pattern. We show the growth rate of the class of permutations avoiding a hatted pattern in comparison to barred pattern
Three families of posets depending on a nonnegative integer parameter $m$ are introduced. The underlying sets of these posets are enumerated by the $m$-Fuss Catalan numbers. Among these, one is a generalization of Stanley lattices and another one is
We introduce $delta$-cliffs, a generalization of permutations and increasing trees depending on a range map $delta$. We define a first lattice structure on these objects and we establish general results about its subposets. Among them, we describe su
Squared singular values of a product of s square random Ginibre matrices are asymptotically characterized by probability distribution P_s(x), such that their moments are equal to the Fuss-Catalan numbers or order s. We find a representation of the Fu
The Lucas sequence is a sequence of polynomials in s, and t defined recursively by {0}=0, {1}=1, and {n}=s{n-1}+t{n-2} for n >= 2. On specialization of s and t one can recover the Fibonacci numbers, the nonnegative integers, and the q-integers [n]_q.