ترغب بنشر مسار تعليمي؟ اضغط هنا

Combinatorial interpretations of Lucas analogues of binomial coefficients and Catalan numbers

101   0   0.0 ( 0 )
 نشر من قبل Bruce E. Sagan
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English
 تأليف Curtis Bennett




اسأل ChatGPT حول البحث

The Lucas sequence is a sequence of polynomials in s, and t defined recursively by {0}=0, {1}=1, and {n}=s{n-1}+t{n-2} for n >= 2. On specialization of s and t one can recover the Fibonacci numbers, the nonnegative integers, and the q-integers [n]_q. Given a quantity which is expressed in terms of products and quotients of nonnegative integers, one obtains a Lucas analogue by replacing each factor of n in the expression with {n}. It is then natural to ask if the resulting rational function is actually a polynomial in s and t with nonnegative integer coefficients and, if so, what it counts. The first simple combinatorial interpretation for this polynomial analogue of the binomial coefficients was given by Sagan and Savage, although their model resisted being used to prove identities for these Lucasnomials or extending their ideas to other combinatorial sequences. The purpose of this paper is to give a new, even more natural model for these Lucasnomials using lattice paths which can be used to prove various equalities as well as extending to Catalan numbers and their relatives, such as those for finite Coxeter groups.

قيم البحث

اقرأ أيضاً

The emph{$q,t$-Catalan numbers} $C_n(q,t)$ are polynomials in $q$ and $t$ that reduce to the ordinary Catalan numbers when $q=t=1$. These polynomials have important connections to representation theory, algebraic geometry, and symmetric functions. Ha glund and Haiman discovered combinatorial formulas for $C_n(q,t)$ as weighted sums of Dyck paths (or equivalently, integer partitions contained in a staircase shape). This paper undertakes a combinatorial investigation of the joint symmetry property $C_n(q,t)=C_n(t,q)$. We conjecture some structural decompositions of Dyck objects into mutually opposite subcollections that lead to a bijective explanation of joint symmetry in certain cases. A key new idea is the construction of infinite chains of partitions that are independent of $n$ but induce the joint symmetry for all $n$ simultaneously. Using these methods, we prove combinatorially that for $0leq kleq 9$ and all $n$, the terms in $C_n(q,t)$ of total degree $binom{n}{2}-k$ have the required symmetry property.
We present a decomposition of the generalized binomial coefficients associated with Jack polynomials into two factors: a stem, which is described explicitly in terms of hooks of the indexing partitions, and a leaf, which inherits various recurrence p roperties from the binomial coefficients and depends exclusively on the skew diagram. We then derive a direct combinatorial formula for the leaf in the special case where the two indexing partitions differ by at most two rows. This formula also exhibits an unexpected symmetry with respect to the lengths of the two rows.
262 - Pavel Galashin , Thomas Lam 2021
Given a permutation $f$, we study the positroid Catalan number $C_f$ defined to be the torus-equivariant Euler characteristic of the associated open positroid variety. We introduce a class of repetition-free permutations and show that the correspondi ng positroid Catalan numbers count Dyck paths avoiding a convex subset of the rectangle. We show that any convex subset appears in this way. Conjecturally, the associated $q,t$-polynomials coincide with the generalized $q,t$-Catalan numbers that recently appeared in relation to the shuffle conjecture, flag Hilbert schemes, and Khovanov-Rozansky homology of Coxeter links.
The classical parking functions, counted by the Cayley number (n+1)^(n-1), carry a natural permutation representation of the symmetric group S_n in which the number of orbits is the nth Catalan number. In this paper, we will generalize this setup to rational parking functions indexed by a pair (a,b) of coprime positive integers. We show that these parking functions, which are counted by b^(a-1), carry a permutation representation of S_a in which the number of orbits is a rational Catalan number. We compute the Frobenius characteristic of the S_a-module of (a,b)-parking functions. Next we propose a combinatorial formula for a q-analogue of the rational Catalan numbers and relate this formula to a new combinatorial model for q-binomial coefficients. Finally, we discuss q,t-analogues of rational Catalan numbers and parking functions (generalizing the shuffle conjecture for the classical case) and present several conjectures.
We prove an infinite family of lacunary recurrences for the Lucas numbers using combinatorial means.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا