ترغب بنشر مسار تعليمي؟ اضغط هنا

Structured Discrete Shape Approximation: Theoretical Complexity and Practical Algorithm

55   0   0.0 ( 0 )
 نشر من قبل Andreas Tillmann
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the problem of approximating a two-dimensional shape contour (or curve segment) using discrete assembly systems, which allow to build geometric structures based on limited sets of node and edge types subject to edge length and orientation restrictions. We show that already deciding feasibility of such approximation problems is NP-hard, and remains intractable even for very simple setups. We then devise an algorithmic framework that combines shape sampling with exact cardinality-minimization to obtain good approximations using few components. As a particular application and showcase example, we discuss approximating shape contours using the classical Zometool construction kit and provide promising computational results, demonstrating that our algorithm is capable of obtaining good shape representations within reasonable time, in spite of the problems general intractability. We conclude the paper with an outlook on possible extensions of the developed methodology, in particular regarding 3D shape approximation tasks.



قيم البحث

اقرأ أيضاً

An important task when working with terrain models is computing viewsheds: the parts of the terrain visible from a given viewpoint. When the terrain is modeled as a polyhedral terrain, the viewshed is composed of the union of all the triangle parts t hat are visible from the viewpoint. The complexity of a viewshed can vary significantly, from constant to quadratic in the number of terrain vertices, depending on the terrain topography and the viewpoint position. In this work we study a new topographic attribute, the emph{prickliness}, that measures the number of local maxima in a terrain from all possible perspectives. We show that the prickliness effectively captures the potential of 2.5D terrains to have high complexity viewsheds, and we present near-optimal algorithms to compute the prickliness of 1.5D and 2.5D terrains. We also report on some experiments relating the prickliness of real word 2.5D terrains to the size of the terrains and to their viewshed complexity.
The distance transform algorithm is popular in computer vision and machine learning domains. It is used to minimize quadratic functions over a grid of points. Felzenszwalb and Huttenlocher (2004) describe an O(N) algorithm for computing the minimum d istance transform for quadratic functions. Their algorithm works by computing the lower envelope of a set of parabolas defined on the domain of the function. In this work, we describe an average time O(N) algorithm for maximizing this function by computing the upper envelope of a set of parabolas. We study the duality of the minimum and maximum distance transforms, give a correctness proof of the algorithm and its runtime, and discuss potential applications.
186 - A. Karim Abu-Affash 2010
Given two sets of points in the plane, $P$ of $n$ terminals and $S$ of $m$ Steiner points, a Steiner tree of $P$ is a tree spanning all points of $P$ and some (or none or all) points of $S$. A Steiner tree with length of longest edge minimized is cal led a bottleneck Steiner tree. In this paper, we study the Euclidean bottleneck Steiner tree problem: given two sets, $P$ and $S$, and a positive integer $k le m$, find a bottleneck Steiner tree of $P$ with at most $k$ Steiner points. The problem has application in the design of wireless communication networks. We first show that the problem is NP-hard and cannot be approximated within factor $sqrt{2}$, unless $P=NP$. Then, we present a polynomial-time approximation algorithm with performance ratio 2.
The problem of vertex guarding a simple polygon was first studied by Subir K. Ghosh (1987), who presented a polynomial-time $O(log n)$-approximation algorithm for placing as few guards as possible at vertices of a simple $n$-gon $P$, such that every point in $P$ is visible to at least one of the guards. Ghosh also conjectured that this problem admits a polynomial-time algorithm with constant approximation ratio. Due to the centrality of guarding problems in the field of computational geometry, much effort has been invested throughout the years in trying to resolve this conjecture. Despite some progress (surveyed below), the conjecture remains unresolved to date. In this paper, we confirm the conjecture for the important case of weakly visible polygons, by presenting a $(2+varepsilon)$-approximation algorithm for guarding such a polygon using vertex guards. A simple polygon $P$ is weakly visible if it has an edge $e$, such that every point in $P$ is visible from some point on $e$. We also present a $(2+varepsilon)$-approximation algorithm for guarding a weakly visible polygon $P$, where guards may be placed anywhere on $P$s boundary (except in the interior of the edge $e$). Finally, we present a $3c$-approximation algorithm for vertex guarding a polygon $P$ that is weakly visible from a chord, given a subset $G$ of $P$s vertices that guards $P$s boundary whose size is bounded by $c$ times the size of a minimum such subset. Our algorithms are based on an in-depth analysis of the geometric properties of the regions that remain unguarded after placing guards at the vertices to guard the polygons boundary. It is plausible that our results will enable Bhattacharya et al. to complete their grand attempt to prove the original conjecture, as their approach is based on partitioning the underlying simple polygon into a hierarchy of weakly visible polygons.
We performed a rigorous theoretical convergence analysis of the discrete dipole approximation (DDA). We prove that errors in any measured quantity are bounded by a sum of a linear and quadratic term in the size of a dipole d, when the latter is in th e range of DDA applicability. Moreover, the linear term is significantly smaller for cubically than for non-cubically shaped scatterers. Therefore, for small d errors for cubically shaped particles are much smaller than for non-cubically shaped. The relative importance of the linear term decreases with increasing size, hence convergence of DDA for large enough scatterers is quadratic in the common range of d. Extensive numerical simulations were carried out for a wide range of d. Finally we discuss a number of new developments in DDA and their consequences for convergence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا