ﻻ يوجد ملخص باللغة العربية
We explore the interpretation of sound for robot decision making, inspired by human speech comprehension. While previous methods separate sound processing unit and robot controller, we propose an end-to-end deep neural network which directly interprets sound commands for visual-based decision making. The network is trained using reinforcement learning with auxiliary losses on the sight and sound networks. We demonstrate our approach on two robots, a TurtleBot3 and a Kuka-IIWA arm, which hear a command word, identify the associated target object, and perform precise control to reach the target. For both robots, we show the effectiveness of our network in generalization to sound types and robotic tasks empirically. We successfully transfer the policy learned in simulator to a real-world TurtleBot3.
Inspired by sensorimotor theory, we propose a novel pipeline for voice-controlled robots. Previous work relies on explicit labels of sounds and images as well as extrinsic reward functions. Not only do such approaches have little resemblance to human
Model-based methods are the dominant paradigm for controlling robotic systems, though their efficacy depends heavily on the accuracy of the model used. Deep neural networks have been used to learn models of robot dynamics from data, but they suffer f
Truly intelligent agents need to capture the interplay of all their senses to build a rich physical understanding of their world. In robotics, we have seen tremendous progress in using visual and tactile perception; however, we have often ignored a k
This work developed a meta-learning approach that adapts the control policy on the fly to different changing conditions for robust locomotion. The proposed method constantly updates the interaction model, samples feasible sequences of actions of esti
Sensory substitution can help persons with perceptual deficits. In this work, we attempt to visualize audio with video. Our long-term goal is to create sound perception for hearing impaired people, for instance, to facilitate feedback for training de