ترغب بنشر مسار تعليمي؟ اضغط هنا

Detailed comparison of communication efficiency of split learning and federated learning

147   0   0.0 ( 0 )
 نشر من قبل Praneeth Vepakomma
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We compare communication efficiencies of two compelling distributed machine learning approaches of split learning and federated learning. We show useful settings under which each method outperforms the other in terms of communication efficiency. We consider various practical scenarios of distributed learning setup and juxtapose the two methods under various real-life scenarios. We consider settings of small and large number of clients as well as small models (1M - 6M parameters), large models (10M - 200M parameters) and very large models (1 Billion-100 Billion parameters). We show that increasing number of clients or increasing model size favors split learning setup over the federated while increasing the number of data samples while keeping the number of clients or model size low makes federated learning more communication efficient.

قيم البحث

اقرأ أيضاً

Communication of model updates between client nodes and the central aggregating server is a major bottleneck in federated learning, especially in bandwidth-limited settings and high-dimensional models. Gradient quantization is an effective way of red ucing the number of bits required to communicate each model update, albeit at the cost of having a higher error floor due to the higher variance of the stochastic gradients. In this work, we propose an adaptive quantization strategy called AdaQuantFL that aims to achieve communication efficiency as well as a low error floor by changing the number of quantization levels during the course of training. Experiments on training deep neural networks show that our method can converge in much fewer communicated bits as compared to fixed quantization level setups, with little or no impact on training and test accuracy.
Federated Learning (FL) is known to perform Machine Learning tasks in a distributed manner. Over the years, this has become an emerging technology especially with various data protection and privacy policies being imposed FL allows performing machine learning tasks whilst adhering to these challenges. As with the emerging of any new technology, there are going to be challenges and benefits. A challenge that exists in FL is the communication costs, as FL takes place in a distributed environment where devices connected over the network have to constantly share their updates this can create a communication bottleneck. In this paper, we present a survey of the research that is performed to overcome the communication constraints in an FL setting.
149 - Wei Liu , Li Chen , 2021
Decentralized federated learning (DFL) is a powerful framework of distributed machine learning and decentralized stochastic gradient descent (SGD) is a driving engine for DFL. The performance of decentralized SGD is jointly influenced by communicatio n-efficiency and convergence rate. In this paper, we propose a general decentralized federated learning framework to strike a balance between communication-efficiency and convergence performance. The proposed framework performs both multiple local updates and multiple inter-node communications periodically, unifying traditional decentralized SGD methods. We establish strong convergence guarantees for the proposed DFL algorithm without the assumption of convex objective function. The balance of communication and computation rounds is essential to optimize decentralized federated learning under constrained communication and computation resources. For further improving communication-efficiency of DFL, compressed communication is applied to DFL, named DFL with compressed communication (C-DFL). The proposed C-DFL exhibits linear convergence for strongly convex objectives. Experiment results based on MNIST and CIFAR-10 datasets illustrate the superiority of DFL over traditional decentralized SGD methods and show that C-DFL further enhances communication-efficiency.
Federated learning (FL) offers a solution to train a global machine learning model while still maintaining data privacy, without needing access to data stored locally at the clients. However, FL suffers performance degradation when client data distri bution is non-IID, and a longer training duration to combat this degradation may not necessarily be feasible due to communication limitations. To address this challenge, we propose a new adaptive training algorithm $texttt{AdaFL}$, which comprises two components: (i) an attention-based client selection mechanism for a fairer training scheme among the clients; and (ii) a dynamic fraction method to balance the trade-off between performance stability and communication efficiency. Experimental results show that our $texttt{AdaFL}$ algorithm outperforms the usual $texttt{FedAvg}$ algorithm, and can be incorporated to further improve various state-of-the-art FL algorithms, with respect to three aspects: model accuracy, performance stability, and communication efficiency.
201 - Yuhao Zhou , Ye Qing , 2020
Petabytes of data are generated each day by emerging Internet of Things (IoT), but only few of them can be finally collected and used for Machine Learning (ML) purposes due to the apprehension of data & privacy leakage, which seriously retarding MLs growth. To alleviate this problem, Federated learning is proposed to perform model training by multiple clients combined data without the dataset sharing within the cluster. Nevertheless, federated learning introduces massive communication overhead as the synchronized data in each epoch is of the same size as the model, and thereby leading to a low communication efficiency. Consequently, variant methods mainly focusing on the communication rounds reduction and data compression are proposed to reduce the communication overhead of federated learning. In this paper, we propose Overlap-FedAvg, a framework that parallels the model training phase with model uploading & downloading phase, so that the latter phase can be totally covered by the former phase. Compared to vanilla FedAvg, Overlap-FedAvg is further developed with a hierarchical computing strategy, a data compensation mechanism and a nesterov accelerated gradients~(NAG) algorithm. Besides, Overlap-FedAvg is orthogonal to many other compression methods so that they can be applied together to maximize the utilization of the cluster. Furthermore, the theoretical analysis is provided to prove the convergence of the proposed Overlap-FedAvg framework. Extensive experiments on both conventional and recurrent tasks with multiple models and datasets also demonstrate that the proposed Overlap-FedAvg framework substantially boosts the federated learning process.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا