ترغب بنشر مسار تعليمي؟ اضغط هنا

Prescriptive Unitarity for Non-Planar Six-Particle Amplitudes at Two Loops

121   0   0.0 ( 0 )
 نشر من قبل Jacob Bourjaily
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We extend the applications of prescriptive unitarity beyond the planar limit to provide local, polylogarithmic, integrand-level representations of six-particle MHV scattering amplitudes in both maximally supersymmetric Yang-Mills theory and gravity. The integrand basis we construct is diagonalized on a spanning set of non-vanishing leading singularities that ensures the manifest matching of all soft-collinear singularities in both theories. As a consequence, this integrand basis naturally splits into infrared-finite and infrared-divergent parts, with hints toward an integrand-level exponentiation of infrared divergences. Importantly, we use the same basis of integrands for both theories, so that the presence or absence of residues at infinite loop momentum becomes a feature detectable by inspecting the cuts of the theory. Complete details of our results are provided as ancillary files. This work has been updated to take into account the results of [arXiv:1911.09106], which leads to a simpler and more uniform representation of these amplitudes.



قيم البحث

اقرأ أيضاً

We give a closed-form, prescriptive representation of all-multiplicity two-loop MHV amplitude integrands in fully-color-dressed (non-planar) maximally supersymmetric Yang-Mills theory.
We compute the six-particle maximally-helicity-violating (MHV) and next-to-MHV (NMHV) amplitudes in planar maximally supersymmetric Yang-Mills theory through seven loops and six loops, respectively, as an application of the extended Steinmann relatio ns and using the cosmic Galois coaction principle. Starting from a minimal space of functions constructed using these principles, we identify the amplitude by matching its symmetries and predicted behavior in various kinematic limits. Through five loops, the MHV and NMHV amplitudes are uniquely determined using only the multi-Regge and leading collinear limits. Beyond five loops, the MHV amplitude requires additional data from the kinematic expansion around the collinear limit, which we obtain from the Pentagon Operator Product Expansion, and in particular from its single-gluon bound state contribution. We study the MHV amplitude in the self-crossing limit, where its singular terms agree with previous predictions. Analyzing and plotting the amplitudes along various kinematical lines, we continue to find remarkable stability between loop orders.
We present an ansatz for the planar five-loop four-point amplitude in maximally supersymmetric Yang-Mills theory in terms of loop integrals. This ansatz exploits the recently observed correspondence between integrals with simple conformal properties and those found in the four-point amplitudes of the theory through four loops. We explain how to identify all such integrals systematically. We make use of generalized unitarity in both four and D dimensions to determine the coefficients of each of these integrals in the amplitude. Maximal cuts, in which we cut all propagators of a given integral, are an especially effective means for determining these coefficients. The set of integrals and coefficients determined here will be useful for computing the five-loop cusp anomalous dimension of the theory which is of interest for non-trivial checks of the AdS/CFT duality conjecture. It will also be useful for checking a conjecture that the amplitudes have an iterative structure allowing for their all-loop resummation, whose link to a recent string-side computation by Alday and Maldacena opens a new venue for quantitative AdS/CFT comparisons.
We compute a complete set of independent leading-color two-loop five-parton amplitudes in QCD. These constitute a fundamental ingredient for the next-to-next-to-leading order QCD corrections to three-jet production at hadron colliders. We show how to consistently consider helicity amplitudes with external fermions in dimensional regularization, allowing the application of a numerical variant of the unitarity approach. Amplitudes are computed by exploiting a decomposition of the integrand into master and surface terms that is independent of the parton type. Master integral coefficients are numerically computed in either finite-field or floating-point arithmetic and combined with known analytic master integrals. We recompute two-loop leading-color four-parton amplitudes as a check of our implementation. Results are presented for all independent four- and five-parton processes including contributions with massless closed fermion loops.
There is growing evidence that on-shell gluon scattering amplitudes in planar N=4 SYM theory are equivalent to Wilson loops evaluated over contours consisting of straight, light-like segments defined by the momenta of the external gluons. This equiva lence was first suggested at strong coupling using the AdS/CFT correspondence and has since been verified at weak coupling to one loop in perturbation theory. Here we perform an explicit two-loop calculation of the Wilson loop dual to the four-gluon scattering amplitude and demonstrate that the relation holds beyond one loop. We also propose an anomalous conformal Ward identity which uniquely fixes the form of the finite part (up to an additive constant) of the Wilson loop dual to four- and five-gluon amplitudes, in complete agreement with the BDS conjecture for the multi-gluon MHV amplitudes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا