ﻻ يوجد ملخص باللغة العربية
Proving ground has been a critical component in testing and validation for Connected and Automated Vehicles (CAV). Although quite a few world-class testing facilities have been under construction over the years, the evaluation of proving grounds themselves as testing approaches has rarely been studied. In this paper, we present the first attempt to systematically evaluate CAV proving grounds and contribute to a generative sample-based approach to assessing the representation of traffic scenarios in proving grounds. Leveraging typical use cases extracted from naturalistic driving events, we establish a strong link between proving ground testing results of CAVs and their anticipated public street performance. We present benchmark results of our approach on three world-class CAV testing facilities: Mcity, Almono (Uber ATG), and Kcity. We successfully show the overall evaluation of these proving grounds in terms of their capability to accommodate real-world traffic scenarios. We believe that when the effectiveness of a testing ground itself is validated, the testing results would grant more confidence for CAV public deployment.
Proving ground, or on-track testing has been an essential part of testing and validation process for connected and autonomous vehicles (CAV). Several world-class CAV proving grounds, such as Mcity at the University of Michigan and The Castle of Waymo
With the increase of research in self-adaptive systems, there is a need to better understand the way research contributions are evaluated. Such insights will support researchers to better compare new findings when developing new knowledge for the com
Current technology for autonomous cars primarily focuses on getting the passenger from point A to B. Nevertheless, it has been shown that passengers are afraid of taking a ride in self-driving cars. One way to alleviate this problem is by allowing th
Robots and self-driving vehicles face a number of challenges when navigating through real environments. Successful navigation in dynamic environments requires prioritizing subtasks and monitoring resources. Animals are under similar constraints. It h
Constrained Iterative Linear Quadratic Regulator (CILQR), a variant of ILQR, has been recently proposed for motion planning problems of autonomous vehicles to deal with constraints such as obstacle avoidance and reference tracking. However, the previ