ترغب بنشر مسار تعليمي؟ اضغط هنا

An Xcity Optimization Approach to Designing Proving Grounds for Connected and Autonomous Vehicles

161   0   0.0 ( 0 )
 نشر من قبل Rui Chen
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Proving ground, or on-track testing has been an essential part of testing and validation process for connected and autonomous vehicles (CAV). Several world-class CAV proving grounds, such as Mcity at the University of Michigan and The Castle of Waymo, have already been built, and many more are currently under construction. In this paper, we propose the first optimization approach to CAV proving ground designing and refer to any such CAV-centric design problem as Xcity to emphasize the enormous investment, the multi-dimensional spatial consideration, and the immense construction effort emerging globally. Inspired by the recent progress on traffic encounter clustering, we further define road assets as fundamental building blocks and formulate the whole design process into nonlinear optimization problems. We have shown that such framework can be utilized to adaptively generate CAV proving ground designs with optimized capability and flexibility and can further be extended to evaluate an existing Xcity design.



قيم البحث

اقرأ أيضاً

Proving ground has been a critical component in testing and validation for Connected and Automated Vehicles (CAV). Although quite a few world-class testing facilities have been under construction over the years, the evaluation of proving grounds them selves as testing approaches has rarely been studied. In this paper, we present the first attempt to systematically evaluate CAV proving grounds and contribute to a generative sample-based approach to assessing the representation of traffic scenarios in proving grounds. Leveraging typical use cases extracted from naturalistic driving events, we establish a strong link between proving ground testing results of CAVs and their anticipated public street performance. We present benchmark results of our approach on three world-class CAV testing facilities: Mcity, Almono (Uber ATG), and Kcity. We successfully show the overall evaluation of these proving grounds in terms of their capability to accommodate real-world traffic scenarios. We believe that when the effectiveness of a testing ground itself is validated, the testing results would grant more confidence for CAV public deployment.
213 - Bo Yu , Jie Tang , Shaoshan Liu 2020
PerceptIn develops and commercializes autonomous vehicles for micromobility around the globe. This paper makes a holistic summary of PerceptIns development and operating experiences. This paper provides the business tale behind our product, and prese nts the development of the computing system for our vehicles. We illustrate the design decision made for the computing system, and show the advantage of offloading localization workloads onto an FPGA platform.
Recent years have witnessed an increasing interest in improving the perception performance of LiDARs on autonomous vehicles. While most of the existing works focus on developing novel model architectures to process point cloud data, we study the prob lem from an optimal sensing perspective. To this end, together with a fast evaluation function based on ray tracing within the perception region of a LiDAR configuration, we propose an easy-to-compute information-theoretic surrogate cost metric based on Probabilistic Occupancy Grids (POG) to optimize LiDAR placement for maximal sensing. We show a correlation between our surrogate function and common object detection performance metrics. We demonstrate the efficacy of our approach by verifying our results in a robust and reproducible data collection and extraction framework based on the CARLA simulator. Our results confirm that sensor placement is an important factor in 3D point cloud-based object detection and could lead to a variation of performance by 10% ~ 20% on the state-of-the-art perception algorithms. We believe that this is one of the first studies to use LiDAR placement to improve the performance of perception.
Various automobile and mobility companies, for instance Ford, Uber and Waymo, are currently testing their pre-produced autonomous vehicle (AV) fleets on the public roads. However, due to rareness of the safety-critical cases and, effectively, unlimit ed number of possible traffic scenarios, these on-road testing efforts have been acknowledged as tedious, costly, and risky. In this study, we propose Accelerated De- ployment framework to safely and efficiently estimate the AVs performance on public streets. We showed that by appropriately addressing the gradual accuracy improvement and adaptively selecting meaningful and safe environment under which the AV is deployed, the proposed framework yield to highly accurate estimation with much faster evaluation time, and more importantly, lower deployment risk. Our findings provide an answer to the currently heated and active discussions on how to properly test AV performance on public roads so as to achieve safe, efficient, and statistically-reliable testing framework for AV technologies.
Connected vehicles will change the modes of future transportation management and organization, especially at an intersection without traffic light. Centralized coordination methods globally coordinate vehicles approaching the intersection from all se ctions by considering their states altogether. However, they need substantial computation resources since they own a centralized controller to optimize the trajectories for all approaching vehicles in real-time. In this paper, we propose a centralized coordination scheme of automated vehicles at an intersection without traffic signals using reinforcement learning (RL) to address low computation efficiency suffered by current centralized coordination methods. We first propose an RL training algorithm, model accelerated proximal policy optimization (MA-PPO), which incorporates a prior model into proximal policy optimization (PPO) algorithm to accelerate the learning process in terms of sample efficiency. Then we present the design of state, action and reward to formulate centralized coordination as an RL problem. Finally, we train a coordinate policy in a simulation setting and compare computing time and traffic efficiency with a coordination scheme based on model predictive control (MPC) method. Results show that our method spends only 1/400 of the computing time of MPC and increase the efficiency of the intersection by 4.5 times.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا