ترغب بنشر مسار تعليمي؟ اضغط هنا

On the baryon-color-flavor (BCF) anomaly in vector-like theories

99   0   0.0 ( 0 )
 نشر من قبل Mohamed Anber
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the most general fractional background fluxes in the color, flavor, and baryon number directions, compatible with the faithful action of the global symmetry of a given theory. We call the obstruction to gauging symmetries revealed by such backgrounds the baryon-color-flavor (BCF) t Hooft anomaly. We apply the BCF anomaly to vector-like theories, with fermions in higher-dimensional representations of arbitrary N-ality, and derive non-trivial constraints on their IR dynamics. In particular, this class of theories enjoys an independent discrete chiral symmetry and one may ask about the fate of this symmetry in the background of BCF fluxes. We show that, under certain conditions, an anomaly between the chiral symmetry and the BCF background rules out massless composite fermions as the sole player in the IR: either the composites do not form or additional contributions to the matching of the BCF anomaly are required. We can also give a flavor-symmetric mass to the fermions, smaller than or of order the strong scale of the theory, and examine the $theta$-angle periodicity of the theory in the BCF background. Interestingly, we find that the conditions that rule out the composites are the exact same conditions that lead to an anomaly of the $theta$ periodicity: the massive theory will experience a phase transition as we vary $theta$ from $0$ to $2pi$.



قيم البحث

اقرأ أيضاً

We present analytical results for the Euclidean 2-point correlator of the flavor-singlet vector current evolved by the gradient flow at next-to-leading order ($O(g^2)$) in perturbatively massless QCD-like theories. We show that the evolved 2-point co rrelator requires multiplicative renormalization, in contrast to the nonevolved case, and confirm, in agreement with other results in the literature, that such renormalization ought to be identified with a universal renormalization of the evolved elementary fermion field in all evolved fermion-bilinear currents, whereas the gauge coupling renormalizes as usual. We explicitly derive the asymptotic solution of the Callan-Symanzik equation for the connected 2-point correlators of these evolved currents in the limit of small gradient-flow time $sqrt{t}$, at fixed separation $|x-y|$. Incidentally, this computation determines the leading coefficient of the operator-product expansion (OPE) in the small $t$ limit for the evolved currents in terms of their local nonevolved counterpart. Our computation also implies that, in the evolved case, conservation of the vector current, hence transversality of the corresponding 2-point correlator, is no longer related to the nonrenormalization, in contrast to the nonevolved case. Indeed, for small flow time the evolved vector current is conserved up to $O(t)$ softly violating effects, despite its $t$-dependent nonvanishing anomalous dimension.
From our previously obtained shear viscosity to entropy density ratio ($eta/s$) in the framework of clustering of color sources (Color String Percolation Model: CSPM), we calculate the jet quenching parameter $hat {q}$ and trace anomaly $Delta = (var epsilon -3it p)/T^{4}$ as a function of temperature. It is shown that the scaled $hat {q}/T^{3}$ is in agreement with the recent JET Collaboration estimates. The inverse of $eta/s$ is found to represent $Delta$. The results for $Delta$ are in excellent agreement with Lattice Quantum Chromo Dynamics (LQCD) simulations. From the trace anomaly and energy density $epsilon$, the equation of state is obtained as a function of temperature and compared with LQCD simulations. It is possible that there is a direct connection between the $eta/s$ and $Delta$. Thus the estimate of transport coefficient $eta/s$ provides $hat {q}$ and $Delta$ as a function of temperature. Both $Delta$ and $eta/s$ describe the transition from a strongly coupled QGP to a weakly coupled QGP.
The axial-vector form factors and axial-vector constants of the baryon decuplet are investigated within a pion mean-field approach, which is also known as the chiral quark-soliton model. Given an axial-vector current with a specified flavor, there ar e four different form factors of a decuplet baryon. When we consider the singlet, triplet, and octet axial-vector currents, we have twelve different form factors for each member of the baryon decuplet. We compute all these axial-vector form factors of the baryon decuplet, taking into account the rotational $1/N_c$ corrections and effects of flavor SU(3) symmetry breaking. We find that, for a given flavor, two of the form factors for a decuplet baryon are only independent within the present approach. We first examine properties of the axial-vector form factors of the $Delta^+$ isobar and $Omega^-$ hyperon. We also compare the results of the triplet axial-vector form factors of $Delta^+$ with those from lattice QCD and those of the present work for the axial-vector constants of the baryon decuplet with the lattice data. All the results for other members of the baryon decuplet are then presented. The results of the axial charges are compared with those of other works. The axial masses and axial radii are also discussed.
54 - Mithat Unsal 2007
We study the phase diagrams of $Nc= infty$ vector-like, asymptotically free gauge theories as a function of volume, on $S^3times S^1$. The theories of interest are the ones with fermions in two index representations [adjoint, (anti)symmetric, and bif undamental abbreviated as QCD(adj), QCD(AS/S) and QCD(BF)], and are interrelated via orbifold or orientifold projections. The phase diagrams reveal interesting phenomena such as disentangled realizations of chiral and center symmetry, confinement without chiral symmetry breaking, zero temperature chiral transitions, and in some cases, exotic phases which spontaneously break the discrete symmetries such as C, P, T as well as CPT. In a regime where the theories are perturbative, the deconfinement temperature in SYM, and QCD(AS/S/BF) coincide. The thermal phase diagrams of thermal orbifold QCD(BF), orientifold QCD(AS/S), and $N=1$ SYM coincide, provided charge conjugation symmetry for QCD(AS/S) and $Z_2$ interchange symmetry of the QCD(BF) are not broken in the phase continously connected to $R^4$ limit. When the $S^1$ circle is endowed with periodic boundary conditions, the (nonthermal) phase diagrams of orbifold and orientifold QCD are still the same, however, both theories possess chirally symmetric phases which are absent in $None$ SYM. The match and mismatch of the phase diagrams depending on the spin structure of fermions along the $S^1$ circle is naturally explained in terms of the necessary and sufficient symmetry realization conditions which determine the validity of the nonperturbative orbifold orientifold equivalence.
A qualitative discussion on the range of the potentials as they result from the phenomenological meson-exchange picture and from lattice simulations by the HAL QCD Collaboration is presented. For the former pion- and/or $eta$-meson exchange are consi dered together with the scalar-isoscalar component of correlated $pipi /K bar K$ exchange. It is observed that the intuitive expectation for the behavior of the baryon-baryon potentials for large separations, associated with the exchange of one and/or two pions, does not always match with the potentials extracted from the lattice simulations. Only in cases where pion exchange provides the longest ranged contribution, like in the $Xi N$ system, a reasonable qualitative agreement between the phenomenological and the lattice QCD potentials is found for baryon-baryon separations of $r gtrsim 1$ fm. For the $Omega N$ and $OmegaOmega$ interactions where isospin conservation rules out one-pion exchange a large mismatch is observed, with the potentials by the HAL QCD Collaboration being much longer ranged and much stronger at large distances as compared to the phenomenological expectation. This casts some doubts on the applicability of using these potentials in few- or many-body systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا