ﻻ يوجد ملخص باللغة العربية
We study the phase diagrams of $Nc= infty$ vector-like, asymptotically free gauge theories as a function of volume, on $S^3times S^1$. The theories of interest are the ones with fermions in two index representations [adjoint, (anti)symmetric, and bifundamental abbreviated as QCD(adj), QCD(AS/S) and QCD(BF)], and are interrelated via orbifold or orientifold projections. The phase diagrams reveal interesting phenomena such as disentangled realizations of chiral and center symmetry, confinement without chiral symmetry breaking, zero temperature chiral transitions, and in some cases, exotic phases which spontaneously break the discrete symmetries such as C, P, T as well as CPT. In a regime where the theories are perturbative, the deconfinement temperature in SYM, and QCD(AS/S/BF) coincide. The thermal phase diagrams of thermal orbifold QCD(BF), orientifold QCD(AS/S), and $N=1$ SYM coincide, provided charge conjugation symmetry for QCD(AS/S) and $Z_2$ interchange symmetry of the QCD(BF) are not broken in the phase continously connected to $R^4$ limit. When the $S^1$ circle is endowed with periodic boundary conditions, the (nonthermal) phase diagrams of orbifold and orientifold QCD are still the same, however, both theories possess chirally symmetric phases which are absent in $None$ SYM. The match and mismatch of the phase diagrams depending on the spin structure of fermions along the $S^1$ circle is naturally explained in terms of the necessary and sufficient symmetry realization conditions which determine the validity of the nonperturbative orbifold orientifold equivalence.
We study confining strings in ${cal{N}}=1$ supersymmetric $SU(N_c)$ Yang-Mills theory in the semiclassical regime on $mathbb{R}^{1,2} times mathbb{S}^1$. Static quarks are expected to be confined by double strings composed of two domain walls - which
In the leading order of the large-$N$ approximation, we study the renormalon ambiguity in the gluon (or, more appropriately, photon) condensate in the 2D supersymmetric $mathbb{C}P^{N-1}$ model on~$mathbb{R}times S^1$ with the $mathbb{Z}_N$ twisted b
We consider string theory on AdS$_3$ $times$ (S$^3$ $times$ S$^3$ $times$ S$^1)/mathbb Z_2$, a background supporting $mathcal N=(3,3)$ spacetime supersymmetry. We propose that string theory on this background is dual to the symmetric product orbifold
We study the infrared renormalon in the gluon condensate in the $SU(N)$ gauge theory with $n_W$-flavor adjoint Weyl fermions (QCD(adj.)) on~$mathbb{R}^3times S^1$ with the $mathbb{Z}_N$ twisted boundary conditions. We rely on the so-called large-$bet
By employing the $1/N$ expansion, we compute the vacuum energy~$E(deltaepsilon)$ of the two-dimensional supersymmetric (SUSY) $mathbb{C}P^{N-1}$ model on~$mathbb{R}times S^1$ with $mathbb{Z}_N$ twisted boundary conditions to the second order in a SUS