ترغب بنشر مسار تعليمي؟ اضغط هنا

Formation of massive stars under protostellar radiation feedback: Very metal-poor stars

138   0   0.0 ( 0 )
 نشر من قبل Hajime Fukushima
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the formation of very metal-poor stars under protostellar radiative feedback effect. We use cosmological simulations to identify low-mass dark matter halos and star-forming gas clouds within them. We then follow protostar formation and the subsequent long-term mass accretion phase of over one million years using two-dimensional radiation-hydrodynamics simulations. We show that the critical physical process that sets the final mass is formation and expansion of a bipolar HII region. The process is similar to the formation of massive primordial stars, but radiation pressure exerted on dust grains also contributes to halting the accretion flow in the low-metallicity case. We find that the net feedback effect in the case with metallicity $Z = 10^{-2}~Z_{odot}$ is stronger than in the case with $Z sim 1~Z_{odot}$. With decreasing metallicity, the radiation pressure effect becomes weaker, but photoionization heating of the circumstellar gas is more efficient owing to the reduced dust attenuation. In the case with $Z = 10^{-2}~Z_{odot}$, the central star grows as massive as 200 solar-masses, similarly to the case of primordial star formation. We conclude that metal-poor stars with a few hundred solar masses can be formed by gas accretion despite the strong radiative feedback.



قيم البحث

اقرأ أيضاً

We use Gaia DR2 astrometric and photometric data, published radial velocities and MESA models to infer distances, orbits, surface gravities, and effective temperatures for all ultra metal-poor stars ($FeH<-4.0$ dex) available in the literature. Assum ing that these stars are old ($>11Gyr$) and that they are expected to belong to the Milky Way halo, we find that these 42 stars (18 dwarf stars and 24 giants or sub-giants) are currently within $sim20kpc$ of the Sun and that they map a wide variety of orbits. A large fraction of those stars remains confined to the inner parts of the halo and was likely formed or accreted early on in the history of the Milky Way, while others have larger apocentres ($>30kpc$), hinting at later accretion from dwarf galaxies. Of particular interest, we find evidence that a significant fraction of all known UMP stars ($sim26$%) are on prograde orbits confined within $3kpc$ of the Milky Way plane ($J_z < 100 kms kpc$). One intriguing interpretation is that these stars belonged to the massive building block(s) of the proto-Milky Way that formed the backbone of the Milky Way disc. Alternatively, they might have formed in the early disc and have been dynamically heated, or have been brought into the Milky Way by one or more accretion events whose orbit was dragged into the plane by dynamical friction before disruption. The combination of the exquisite Gaia DR2 data and surveys of the very metal-poor sky opens an exciting era in which we can trace the very early formation of the Milky Way.
The abundances of r-process elements of very metal-poor stars capture the history of the r-process enrichment in the early stage of star formation in a galaxy. Currently, various types of astrophysical sites including neutron star mergers, magneto-ro tational supernovae, and collapsars, are suggested as the origin of r-process elements. The time delay between the star formation and the production of r-process elements is the key to distinguish these scenarios with the caveat that the diffusion of r-process elements in the interstellar medium may induce the delay in r-process enrichment because r-process events are rare. Here we study the observed Ba abundance data of very metal-poor stars as the tracer of the early enrichment history of r-process elements. We find that the gradual increase of [Ba/Mg] with [Fe/H], which is remarkably similar among the Milky Way and classical dwarfs, requires a significant time delay (100 Myr -- 1 Gyr) of r-process events from star formation rather than the diffusion-induced delay. We stress that this conclusion is robust to the assumption regarding s-process contamination in the Ba abundances because the sources with no delay would overproduce Ba at very low metallicities even without the contribution from the s-process. Therefore we conclude that sources with a delay, possibly neutron star mergers, are the origins of r-process elements.
60 - Gen Chiaki , Hajime Susa , 2018
Metal enrichment by the first-generation (Pop III) stars is the very first step of the matter cycle in the structure formation and it is followed by the formation of extremely metal-poor (EMP) stars. To investigate the enrichment process by the Pop I II stars, we carry out a series of numerical simulations including the feedback effects of photoionization and supernovae (SNe) of Pop III stars with a range of masses of minihaloes (MHs), M_halo , and Pop III stars, M_PopIII . We find that the metal-rich ejecta reaches neighbouring haloes and external enrichment (EE) occurs when the halo binding energy is sufficiently below the SN explosion energy, E_SN . The neighbouring haloes are only superficially enriched, and the metallicity of the clouds is [Fe/H] < -5. Otherwise, the SN ejecta falls back and recollapses to form enriched cloud, i.e. internal enrichment (IE) process takes place. In case that a Pop III star explodes as a core-collapse SNe (CCSNe), MHs undergo IE, and the metallicity in the recollapsing region is -5 < [Fe/H] < -3 in most cases. We conclude that IE from a single CCSN can explain the formation of EMP stars. For pair-instability SNe (PISNe), EE takes place for all relevant mass range of MHs, consistent with no observational sign of PISNe among EMP stars.
We analyze the dynamical properties of $sim$1500 very metal-poor (VMP; [Fe/H] $lesssim -2.0$) halo stars, based primarily on medium-resolution spectroscopic data from the HK and Hamburg/ESO surveys. These data, collected over the past thirty years, a re supplemented by a number of calibration stars and other small samples, along with astrometric information from $Gaia$ DR2. We apply a clustering algorithm to the 4-D energy-action space of the sample, and identify a set of 38 Dynamically Tagged Groups (DTGs), containing between 5 and 30 member stars. Many of these DTGs can be associated with previously known prominent substructures such as $Gaia$-Sausage/Enceladus (GSE), Sequoia, the Helmi Stream (HStr), and Thamnos. Others are associated with previously identified smaller dynamical groups of stars and streams. We identify 10 new DTGs as well, many of which have strongly retrograde orbits. We also investigate possible connections between our DTGs and $sim$300 individual $r$-process-enhanced (RPE) stars from a recent literature compilation. We find that several of these objects have similar dynamical properties to GSE (5), the HStr (4), Sequoia (1), and Rg5 (1), indicating that their progenitors might have been important sources of RPE stars in the Galaxy. Additionally, a number of our newly identified DTGs are shown to be associated with at least two RPE stars each (DTG-2: 3, DTG-7: 2; DTG-27: 2). Taken as a whole, these results are consistent with ultra-faint and/or dwarf spheroidal galaxies as birth environments in which $r$-process nucleosynthesis took place, and then were disrupted by the Milky Way.
The Magellanic Bridge stretching between the SMC and LMC is the nearest tidally stripped intergalactic environment and has a low average metallicity of $Z~0.1Z_{odot}$. Here we report the first discovery of three O-type stars in the Bridge using arch ival spectra collected with FLAMES at ESO/VLT. We analyze the spectra using the PoWR models, which provide the physical parameters, ionizing photon fluxes, and surface abundances. This discovery suggests that the tidally stripped low density gas is capable of producing massive O stars and their ages imply ongoing star formation in the Bridge. The multi-epoch spectra indicate that all three O stars are binaries. Despite their spatial proximity to each other, these O stars are chemically distinct. One of them is a fast-rotating giant with nearly LMC-like abundances. The other two are main-sequence stars that rotate extremely slowly and are strongly metal depleted. This includes the most nitrogen-poor O star known up to date. Taking into account the previous analyses of B stars in the Bridge, we interpret the various metal abundances as the signature of a chemically inhomogeneous interstellar medium, suggesting that the gas might have accreted during multiple episodes of tidal interaction between the Clouds. Attributing the lowest derived metal content to the primordial gas, the time of initial formation of the Bridge may date back to several Gyr. Using the Gaia and Galex color-magnitude diagrams we roughly estimate the total number of O stars in the Bridge and their total ionizing radiation. Comparing with the energetics of the diffuse ISM, we find that the contribution of the hot stars to the ionizing radiation field in the Bridge is less than 10%, and conclude that the main sources of ionizing photons are leaks from the LMC and SMC. We estimate a lower limit for the fraction of ionizing radiation that escapes from these two dwarf galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا