ﻻ يوجد ملخص باللغة العربية
The ability to generate, amplify, mix, and modulate sound with no harmonic distortion in a passive opto-acoustic device would revolutionize the field of acoustics. The photo-thermo-acoustic (PTA) effect allows to transduce light into sound without any bulk electro-mechanically moving parts and electrical connections, as for conventional loudspeakers. Also, PTA devices can be integrated with standard silicon complementary metal-oxide semiconductor (CMOS) fabrication techniques. Here, we demonstrate that the ultimate PTA efficiency of graphene aerogels, depending on their particular thermal and optical properties, can be experimentally achieved by reducing their mass density. Furthermore, we illustrate that the aerogels behave as an omnidirectional point-source throughout the audible range with no harmonic distortion. This research represents a breakthrough for audio-visual consumer technologies and it could pave the way to novel opto-acoustic sensing devices.
We present a new approach to femtosecond direct laser writing lithography to pattern nanocavities in ferromagnetic thin films. To demonstrate the concept we irradiated 300~nm thin nickel films by single intense femtosecond laser pulses through the gl
Photo-Induced Enhanced Raman Spectroscopy (PIERS) is a new surface enhanced Raman spectroscopy (SERS) modality with an order-of-magnitude Raman signal enhancement of adsorbed analytes over that of typical SERS substrates. Despite the impressive PIERS
We measure the phase velocities of surface acoustic waves (SAWs) propagating at different crystal orientations on (001)-cut GaAs substrates and their temperature dependance. We design and fabricate sets of interdigital transducers (IDTs) to induce 4
We describe strategies to estimate the upper limits of the efficiency of photon energy harvesting via hot electron extraction from gapless absorbers. Gapless materials such as noble metals can be used for harvesting the whole solar spectrum, includin
Core-shell nanowire heterostructures form the basis for many innovative devices. When compound nanowire shells are grown by directional deposition techniques, the azimuthal position of the sources for the different constituents in the growth reactor,