ترغب بنشر مسار تعليمي؟ اضغط هنا

Modeling Event Background for If-Then Commonsense Reasoning Using Context-aware Variational Autoencoder

79   0   0.0 ( 0 )
 نشر من قبل Li Du
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Understanding event and event-centered commonsense reasoning are crucial for natural language processing (NLP). Given an observed event, it is trivial for human to infer its intents and effects, while this type of If-Then reasoning still remains challenging for NLP systems. To facilitate this, a If-Then commonsense reasoning dataset Atomic is proposed, together with an RNN-based Seq2Seq model to conduct such reasoning. However, two fundamental problems still need to be addressed: first, the intents of an event may be multiple, while the generations of RNN-based Seq2Seq models are always semantically close; second, external knowledge of the event background may be necessary for understanding events and conducting the If-Then reasoning. To address these issues, we propose a novel context-aware variational autoencoder effectively learning event background information to guide the If-Then reasoning. Experimental results show that our approach improves the accuracy and diversity of inferences compared with state-of-the-art baseline methods.

قيم البحث

اقرأ أيضاً

We introduce an improved variational autoencoder (VAE) for text modeling with topic information explicitly modeled as a Dirichlet latent variable. By providing the proposed model topic awareness, it is more superior at reconstructing input texts. Fur thermore, due to the inherent interactions between the newly introduced Dirichlet variable and the conventional multivariate Gaussian variable, the model is less prone to KL divergence vanishing. We derive the variational lower bound for the new model and conduct experiments on four different data sets. The results show that the proposed model is superior at text reconstruction across the latent space and classifications on learned representations have higher test accuracies.
Current commonsense reasoning research focuses on developing models that use commonsense knowledge to answer multiple-choice questions. However, systems designed to answer multiple-choice questions may not be useful in applications that do not provid e a small list of candidate answers to choose from. As a step towards making commonsense reasoning research more realistic, we propose to study open-ended commonsense reasoning (OpenCSR) -- the task of answering a commonsense question without any pre-defined choices -- using as a resource only a corpus of commonsense facts written in natural language. OpenCSR is challenging due to a large decision space, and because many questions require implicit multi-hop reasoning. As an approach to OpenCSR, we propose DrFact, an efficient Differentiable model for multi-hop Reasoning over knowledge Facts. To evaluate OpenCSR methods, we adapt several popular commonsense reasoning benchmarks, and collect multiple new answers for each test question via crowd-sourcing. Experiments show that DrFact outperforms strong baseline methods by a large margin.
Commonsense inference to understand and explain human language is a fundamental research problem in natural language processing. Explaining human conversations poses a great challenge as it requires contextual understanding, planning, inference, and several aspects of reasoning including causal, temporal, and commonsense reasoning. In this work, we introduce CIDER -- a manually curated dataset that contains dyadic dialogue explanations in the form of implicit and explicit knowledge triplets inferred using contextual commonsense inference. Extracting such rich explanations from conversations can be conducive to improving several downstream applications. The annotated triplets are categorized by the type of commonsense knowledge present (e.g., causal, conditional, temporal). We set up three different tasks conditioned on the annotated dataset: Dialogue-level Natural Language Inference, Span Extraction, and Multi-choice Span Selection. Baseline results obtained with transformer-based models reveal that the tasks are difficult, paving the way for promising future research. The dataset and the baseline implementations are publicly available at https://cider-task.github.io/cider/.
We consider the problem of diversifying automated reply suggestions for a commercial instant-messaging (IM) system (Skype). Our conversation model is a standard matching based information retrieval architecture, which consists of two parallel encoder s to project messages and replies into a common feature representation. During inference, we select replies from a fixed response set using nearest neighbors in the feature space. To diversify responses, we formulate the model as a generative latent variable model with Conditional Variational Auto-Encoder (M-CVAE). We propose a constrained-sampling approach to make the variational inference in M-CVAE efficient for our production system. In offline experiments, M-CVAE consistently increased diversity by ~30-40% without significant impact on relevance. This translated to a 5% gain in click-rate in our online production system.
152 - Le Fang , Tao Zeng , Chaochun Liu 2021
We investigate large-scale latent variable models (LVMs) for neural story generation -- an under-explored application for open-domain long text -- with objectives in two threads: generation effectiveness and controllability. LVMs, especially the vari ational autoencoder (VAE), have achieved both effective and controllable generation through exploiting flexible distributional latent representations. Recently, Transformers and its variants have achieved remarkable effectiveness without explicit latent representation learning, thus lack satisfying controllability in generation. In this paper, we advocate to revive latent variable modeling, essentially the power of representation learning, in the era of Transformers to enhance controllability without hurting state-of-the-art generation effectiveness. Specifically, we integrate latent representation vectors with a Transformer-based pre-trained architecture to build conditional variational autoencoder (CVAE). Model components such as encoder, decoder and the variational posterior are all built on top of pre-trained language models -- GPT2 specifically in this paper. Experiments demonstrate state-of-the-art conditional generation ability of our model, as well as its excellent representation learning capability and controllability.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا