ترغب بنشر مسار تعليمي؟ اضغط هنا

New active galactic nuclei science cases with interferometry: An incomplete preview

66   0   0.0 ( 0 )
 نشر من قبل Sebastian H\\\"onig
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Infrared (IR) interferometry has made widely recognised contributions to the way we look at the dusty environment of supermassive black holes on parsec scales. It finally provided direct evidence for orientation-dependent unification of active galaxies, however it also showed that the classical torus picture is oversimplified. New scientific opportunities for AGN have been suggested, and will soon be carried out, focusing on the dynamical aspects of spectrally and spatially resolved interferometry, as well as the potential to employ interferometry for cosmology. This will open interferometry to new scientific communities.



قيم البحث

اقرأ أيضاً

Gravitational-wave (GW) and gravitational slingshot recoil kicks, which are natural products of SMBH evolution in merging galaxies, can produce active galactic nuclei that are offset from the centers of their host galaxies. Detections of offset AGN w ould provide key constraints on SMBH binary mass and spin evolution and on GW event rates. Although numerous offset AGN candidates have been identified, none have been definitively confirmed. The ngVLA offers unparalleled capabilities to identify and confirm candidate offset AGN from sub-parsec to kiloparsec scales, opening a new avenue for multi-messenger studies in the dawn of low-frequency GW astronomy.
We present a summary of the observation strategy of TANAMI (Tracking Active Galactic Nuclei with Austral Milliarcsecond Interferometry), a monitoring program to study the parsec-scale structure and dynamics of relativistic jets in active galactic nuc lei (AGN) of the Southern Hemisphere with the Australian Long Baseline Array (LBA) and the trans-oceanic antennas Hartebeesthoek, TIGO, and OHiggins. TANAMI is focusing on extragalactic sources south of -30 degrees declination with observations at 8.4 GHz and 22 GHz every ~2 months at milliarcsecond resolution. The initial TANAMI sample of 43 sources has been defined before the launch of the Fermi Gamma Ray Space Telescope to include the most promising candidates for bright gamma-ray emission to be detected with its Large Area Telescope (LAT). Since November 2008, we have been adding new sources to the sample, which now includes all known radio- and gamma-ray bright AGN of the Southern Hemisphere. The combination of VLBI and gamma-ray observations is crucial to understand the broadband emission characteristics of AGN and the nature of relativistic jets.
131 - Ryan C. Hickox 2018
Active Galactic Nuclei (AGN) are powered by the accretion of material onto a supermassive black hole (SMBH), and are among the most luminous objects in the Universe. However, the huge radiative power of most AGN cannot be seen directly, as the accret ion is hidden behind gas and dust that absorbs many of the characteristic observational signatures. This obscuration presents an important challenge for uncovering the complete AGN population and understanding the cosmic evolution of SMBHs. In this review we describe a broad range of multi-wavelength techniques that are currently employed to identify obscured AGN, and assess the reliability and completeness of each technique. We follow with a discussion of the demographics of obscured AGN activity, explore the nature and physical scales of the obscuring material, and assess the implications of obscured AGN for observational cosmology. We conclude with an outline of the prospects for future progress from both observations and theoretical models, and highlight some of the key outstanding questions.
Optical long-baseline interferometry is a unique and powerful technique for astronomical research. Since 2004, optical interferometers have produced an increasing number of scientific papers covering various fields of astrophysics. As current interfe rometric facilities are reaching their maturity, we take the opportunity in this paper to summarize the conclusions of a few key meetings, workshops, and conferences dedicated to interferometry. We present the most persistent recommendations related to science cases and discuss some key technological developments required to address them. In the era of extremely large telescopes, optical long-baseline interferometers will remain crucial to probe the smallest spatial scales and make breakthrough discoveries.
Gravitational wave (GW) and gravitational slingshot recoil kicks, which are natural products of SMBH evolution in merging galaxies, can produce active galactic nuclei that are offset from the centers of their host galaxies. Detections of offset AGN w ould provide key constraints on SMBH binary mass and spin evolution and on GW event rates. Although numerous offset AGN candidates have been identified, none have been definitively confirmed. Multi-wavelength observations with next-generation telescopes, including systematic large-area surveys, will provide unprecedented opportunities to identify and confirm candidate offset AGN from sub-parsec to kiloparsec scales. We highlight ways in which these observations will open a new avenue for multi-messenger studies in the dawn of low-frequency (~ nHz - mHz) GW astronomy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا