ﻻ يوجد ملخص باللغة العربية
Gravitational wave (GW) and gravitational slingshot recoil kicks, which are natural products of SMBH evolution in merging galaxies, can produce active galactic nuclei that are offset from the centers of their host galaxies. Detections of offset AGN would provide key constraints on SMBH binary mass and spin evolution and on GW event rates. Although numerous offset AGN candidates have been identified, none have been definitively confirmed. Multi-wavelength observations with next-generation telescopes, including systematic large-area surveys, will provide unprecedented opportunities to identify and confirm candidate offset AGN from sub-parsec to kiloparsec scales. We highlight ways in which these observations will open a new avenue for multi-messenger studies in the dawn of low-frequency (~ nHz - mHz) GW astronomy.
Gravitational-wave (GW) and gravitational slingshot recoil kicks, which are natural products of SMBH evolution in merging galaxies, can produce active galactic nuclei that are offset from the centers of their host galaxies. Detections of offset AGN w
We have observed two kinematically offset active galactic nuclei (AGN), whose ionised gas is at a different line-of-sight velocity to their host galaxies, with the SAMI integral field spectrograph (IFS). One of the galaxies shows gas kinematics very
Active Galactic Nuclei (AGN) are powered by the accretion of material onto a supermassive black hole (SMBH), and are among the most luminous objects in the Universe. However, the huge radiative power of most AGN cannot be seen directly, as the accret
Galaxy pairs with separations of only a few kpc represent important stages in the merger-driven growth of supermassive black holes (SMBHs). However, such mergers are difficult to identify observationally due to the correspondingly small angular scale
We use mid-infrared spectroscopy of unobscured active galactic nuclei (AGNs) to reveal their native dusty environments. We concentrate on Seyfert 1 galaxies, observing a sample of 31 with the Infrared Spectrograph aboard the Spitzer Space Telescope,