ﻻ يوجد ملخص باللغة العربية
Automatic Speech Recognition (ASR) using multiple microphone arrays has achieved great success in the far-field robustness. Taking advantage of all the information that each array shares and contributes is crucial in this task. Motivated by the advances of joint Connectionist Temporal Classification (CTC)/attention mechanism in the End-to-End (E2E) ASR, a stream attention-based multi-array framework is proposed in this work. Microphone arrays, acting as information streams, are activated by separate encoders and decoded under the instruction of both CTC and attention networks. In terms of attention, a hierarchical structure is adopted. On top of the regular attention networks, stream attention is introduced to steer the decoder toward the most informative encoders. Experiments have been conducted on AMI and DIRHA multi-array corpora using the encoder-decoder architecture. Compared with the best single-array results, the proposed framework has achieved relative Word Error Rates (WERs) reduction of 3.7% and 9.7% in the two datasets, respectively, which is better than conventional strategies as well.
We present Espresso, an open-source, modular, extensible end-to-end neural automatic speech recognition (ASR) toolkit based on the deep learning library PyTorch and the popular neural machine translation toolkit fairseq. Espresso supports distributed
This paper proposes serialized output training (SOT), a novel framework for multi-speaker overlapped speech recognition based on an attention-based encoder-decoder approach. Instead of having multiple output layers as with the permutation invariant t
The multi-stream paradigm of audio processing, in which several sources are simultaneously considered, has been an active research area for information fusion. Our previous study offered a promising direction within end-to-end automatic speech recogn
While significant improvements have been made in recent years in terms of end-to-end automatic speech recognition (ASR) performance, such improvements were obtained through the use of very large neural networks, unfit for embedded use on edge devices
Attention-based methods and Connectionist Temporal Classification (CTC) network have been promising research directions for end-to-end (E2E) Automatic Speech Recognition (ASR). The joint CTC/Attention model has achieved great success by utilizing bot