ترغب بنشر مسار تعليمي؟ اضغط هنا

Evolution of 3-dimensional Shape of Passively Evolving and Star-forming Galaxies at $z<1$

155   0   0.0 ( 0 )
 نشر من قبل Masaru Kajisawa
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using the HST/ACS $I_{rm F814W}$-band data, we investigated distribution of apparent axial ratios of $sim21000$ galaxies with $M_{V}<-20$ at $0.2<z<1.0$ in the COSMOS field as a function of stellar mass, specific star formation rate (sSFR), and redshift. We statistically estimated intrinsic 3-dimensional shapes of these galaxies by fitting the axial-ratio distribution with triaxial ellipsoid models characterized by face-on (middle-to-long) and edge-on (short-to-long) axial ratios $B/A$ and $C/A$. We found that the transition from thin disk to thick spheroid occurs at $Delta$MS $sim-1$ dex, i.e., 10 times lower sSFR than that of the main sequence for galaxies with $M_{rm star} = 10^{10}$--$10^{11} M_{odot}$ at $0.2<z<1.0$. Furthermore, the intrinsic thickness ($C/A$) of passively evolving galaxies with $M_{rm star}=10^{10}$--$10^{11}M_{odot}$ significantly decreases with time from $C/A sim 0.40$ -- $0.50$ at $zsim 0.8$ to $C/Asim0.33$ -- $0.37$ at $zsim0.4$, while those galaxies with $M_{rm star}>10^{11}M_{odot}$ have $C/Asim0.5$ irrespective of redshift. On the other hand, star-forming galaxies on the main sequence with $10^{9.5}$--$10^{11}M_{odot}$ show no significant evolution in their shape at $0.2<z<1.0$, but their thickness depends on stellar mass;more massive star-forming galaxies tend to have lower $C/A$ (thinner shape) than low-mass ones. These results suggest that some fraction of star-forming galaxies with a thin disk, which started to appear around $zsim1$, quench their star formation without violent morphological change, and these newly added quiescent galaxies with a relatively thin shape cause the significant evolution in the axial-ratio distribution of passively evolving galaxies with $M_{rm star}<10^{11}M_{odot}$ at $z<1$.

قيم البحث

اقرأ أيضاً

117 - Yicheng Guo 2011
A new set of color selection criteria (VJL) analogous with the BzK method is designed to select both star-forming galaxies (SFGs) and passively-evolving galaxies (PEGs) at 2.3<z<3.5 by using rest-frame UV--optical (V-J vs. J-L) colors. The criteria a re thoroughly tested with theoretical stellar population synthesis models and real galaxies with spectroscopic redshifts to evaluate their efficiency and contamination. We apply the well-tested VJL criteria to the HST/WFC3 Early Release Science field and study the physical properties of selected galaxies. The redshift distribution of selected SFGs peaks at z~2.7, slightly lower than that of Lyman Break Galaxies at z~3. Comparing the observed mid-infrared fluxes of selected galaxies with the prediction of pure stellar emission, we find that our VJL method is effective at selecting massive dusty SFGs that are missed by the Lyman Break Technique. About half of the star formation in massive (M_{star}>10^{10}M_{Sun}) galaxies at 2.3<z<3.5 is contributed by dusty (extinction E(B-V)>0.4) SFGs, which however, only account for ~20% of the number density of massive SFGs. We also use the mid-infrared fluxes to clean our PEG sample, and find that galaxy size can be used as a secondary criterion to effectively eliminate the contamination of dusty SFGs. The redshift distribution of the cleaned PEG sample peaks at z~2.5. We find 6 PEG candidates at z>3 and discuss possible methods to distinguish them from dusty contamination. We conclude that at least part of our candidates are real PEGs at z~3, implying that this type of galaxies began to form their stars at z>5. We measure the integrated stellar mass density of PEGs at z~2.5 and set constraints on it at z>3. We find that the integrated stellar mass density grows by at least about factor of 10 in 1 Gyr at 3<z<5 and by another factor of 10 in next 3.5 Gyr (1<z<3).
[Abridged] We present the results of new near-IR spectroscopic observations of passive galaxies at z>1.4 in a concentration of BzK-selected galaxies in the COSMOS field. The observations have been conducted with Subaru/MOIRCS, and have resulted in ab sorption lines and/or continuum detection for 18 out of 34 objects. This allows us to measure spectroscopic redshifts for a sample almost complete to K(AB)=21. COSMOS photometric redshifts are found in fair agreement overall with the spectroscopic redshifts, with a standard deviation of ~0.05; however, ~30% of objects have photometric redshifts systematically underestimated by up to ~25%. We show that these systematic offsets in photometric redshifts can be removed by using these objects as a training set. All galaxies fall in four distinct redshift spikes at z=1.43, 1.53, 1.67 and 1.82, with this latter one including 7 galaxies. SED fits to broad-band fluxes indicate stellar masses in the range of ~4-40x10^10Msun and that star formation was quenched ~1 Gyr before the cosmic epoch at which they are observed. The spectra of several individual galaxies have allowed us to measure their Hdelta_F and Dn4000 indices, which confirms their identification as passive galaxies, as does a composite spectrum resulting from the coaddition of 17 individual spectra. The effective radii of the galaxies have been measured on the HST/ACS F814W image, confirming the coexistence at these redshifts of passive galaxies which are substantially more compact than their local counterparts with others that follow the local size-stellar mass relation. For the galaxy with best S/N spectrum we were able to measure a velocity dispersion of 270+/-105 km/s, indicating that this galaxy lies closely on the virial relation given its stellar mass and effective radius.
Recent simulation studies suggest that the compaction of star-forming galaxies (SFGs) at high redshift might be a critical process, during which the central bulge is being rapidly built, followed by quenching of the star formation. To explore dust pr operties of SFGs with compact morphology, we investigate the dependence of dust temperature, $T_{rm{dust}}$, on their size and star formation activity, using a sample of massive SFGs with $log (M_{ast}/M_{odot}) > 10$ at $1 < z < 3$, drawn from the 3D-{it HST}/CANDELS database in combination with deep {it Herschel} observations. $T_{rm{dust}}$ is derived via fitting the mid-to-far-infrared photometry with a mid-infrared power law and a far-infrared modified blackbody. We find that both extended and compact SFGs generally follow a similar $T_{rm{dust}}-z$ evolutionary track as that of the main-sequence galaxies. The compact SFGs seem to share similar dust temperature with extended SFGs. Despite the frequent occurrence of AGNs in compact SFGs, we do not observe any effect on dust caused by the presence of AGN in these galaxies during the compaction. Our results disfavor different ISM properties between compact and extended SFGs, suggesting that a rapid and violet compaction process might be not necessary for the formation of compact SFGs.
We study the molecular gas content of 24 star-forming galaxies at $z=3-4$, with a median stellar mass of $10^{9.1}$ M$_{odot}$, from the MUSE Hubble Ultra Deep Field (HUDF) Survey. Selected by their Lyman-alpha-emission and H-band magnitude, the gala xies show an average EW $approx 20$ angstrom, below the typical selection threshold for Lyman Alpha Emitters (EW $> 25$ angstrom), and a rest-frame UV spectrum similar to Lyman Break Galaxies. We use rest-frame optical spectroscopy from KMOS and MOSFIRE, and the UV features observed with MUSE, to determine the systemic redshifts, which are offset from Lyman alpha by 346 km s$^{-1}$, with a 100 to 600 km s$^{-1}$ range. Stacking CO(4-3) and [CI](1-0) (and higher-$J$ CO lines) from the ALMA Spectroscopic Survey of the HUDF (ASPECS), we determine $3sigma$ upper limits on the line luminosities of $4.0times10^{8}$ K km s$^{-1}$pc$^{2}$ and $5.6times10^{8}$ K km s$^{-1}$pc$^{2}$, respectively (for a 300 km s$^{-1}$ linewidth). Stacking the 1.2 mm and 3 mm dust continuum flux densities, we find a $3sigma$ upper limits of 9 $mu$Jy and $1.2$ $mu$Jy, respectively. The inferred gas fractions, under the assumption of a Galactic CO-to-H$_{2}$ conversion factor and gas-to-dust ratio, are in tension with previously determined scaling relations. This implies a substantially higher $alpha_{rm CO} ge 10$ and $delta_{rm GDR} ge 1200$, consistent with the sub-solar metallicity estimated for these galaxies ($12 + log(O/H) approx 7.8 pm 0.2$). The low metallicity of $z ge 3$ star-forming galaxies may thus make it very challenging to unveil their cold gas through CO or dust emission, warranting further exploration of alternative tracers, such as [CII].
186 - Etsuko Mieda 2016
We present results from IROCKS (Intermediate Redshift OSIRIS Chemo-Kinematic Survey) for sixteen z~1 and one z~1.4 star-forming galaxies. All galaxies were observed with OSIRIS with the laser guide star adaptive optics system at Keck Observatory. We use rest-frame nebular Ha emission lines to trace morphologies and kinematics of ionized gas in star-forming galaxies on sub-kiloparsec physical scales. We observe elevated velocity dispersions (sigma > 50 km/s) seen in z > 1.5 galaxies persist at z~1 in the integrated galaxies. Using an inclined disk model and the ratio of v/sigma, we find that 1/3 of the z~1 sample are disk candidates while the other 2/3 of the sample are dominated by merger-like and irregular sources. We find that including extra attenuation towards HII regions derived from stellar population synthesis modeling brings star formation rates (SFR) using Ha and stellar population fit into a better agreement. We explore properties of compact Ha sub-component, or clump, at z~1 and find that they follow a similar size-luminosity relation as local HII regions but are scaled-up by an order of magnitude with higher luminosities and sizes. Comparing the z~1 clumps to other high-redshift clump studies, we determine that the clump SFR surface density evolves as a function of redshift. This may imply clump formation is directly related to the gas fraction in these systems and support disk fragmentation as their formation mechanism since gas fraction scales with redshift.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا