ﻻ يوجد ملخص باللغة العربية
Predicting the future trajectory of agents from visual observations is an important problem for realization of safe and effective navigation of autonomous systems in dynamic environments. This paper focuses on two important aspects of future trajectory forecast which are particularly relevant for mobile platforms: 1) modeling uncertainty of the predictions, particularly from egocentric views, where uncertainty in the interactive reactions and behaviors of other agents must consider the uncertainty in the ego-motion, and 2) modeling multi-modality nature of the problem, which are particularly prevalent at junctions in urban traffic scenes. To address these problems in a unified approach, we propose NEMO (Noisy Ego MOtion priors for future object localization) for future forecast of agents in the egocentric view. In the proposed approach, a predictive distribution of future forecast is jointly modeled with the uncertainty of predictions. For this, we divide the problem into two tasks: future ego-motion prediction and future object localization. We first model the multi-modal distribution of future ego-motion with uncertainty estimates. The resulting distribution of ego-behavior is used to sample multiple modes of future ego-motion. Then, each modality is used as a prior to understand the interactions between the ego-vehicle and target agent. We predict the multi-modal future locations of the target from individual modes of the ego-vehicle while modeling the uncertainty of the targets behavior. To this end, we extensively evaluate the proposed framework using the publicly available benchmark dataset (HEV-I) supplemented with odometry data from an Inertial Measurement Unit (IMU).
We propose DSP-SLAM, an object-oriented SLAM system that builds a rich and accurate joint map of dense 3D models for foreground objects, and sparse landmark points to represent the background. DSP-SLAM takes as input the 3D point cloud reconstructed
We consider the problem of predicting the future trajectory of scene agents from egocentric views obtained from a moving platform. This problem is important in a variety of domains, particularly for autonomous systems making reactive or strategic dec
A new unsupervised learning method of depth and ego-motion using multiple masks from monocular video is proposed in this paper. The depth estimation network and the ego-motion estimation network are trained according to the constraints of depth and e
We propose a complete pipeline that allows object detection and simultaneously estimate the pose of these multiple object instances using just a single image. A novel keypoint regression scheme with a cross-ratio term is introduced that exploits prio
In this paper, we propose a novel architecture that iteratively discovers and segments out the objects of a scene based on the image reconstruction quality. Different from other approaches, our model uses an explicit localization module that localize