ترغب بنشر مسار تعليمي؟ اضغط هنا

A micropillar for cavity optomechanics

133   0   0.0 ( 0 )
 نشر من قبل Antoine Heidmann
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. G. Kuhn




اسأل ChatGPT حول البحث

We present a new micromechanical resonator designed for cavity optomechanics. We have used a micropillar geometry to obtain a high-frequency mechanical resonance with a low effective mass and a very high quality factor. We have coated a 60-$mu$m diameter low-loss dielectric mirror on top of the pillar and are planning to use this micromirror as part of a high-finesse Fabry-Perot cavity, to laser cool the resonator down to its quantum ground state and to monitor its quantum position fluctuations by quantum-limited optical interferometry.



قيم البحث

اقرأ أيضاً

Single-crystal diamond cavity optomechanical devices are a promising example of a hybrid quantum system: by coupling mechanical resonances to both light and electron spins, they can enable new ways for photons to control solid state qubits. However, realizing cavity optomechanical devices from high quality diamond chips has been an outstanding challenge. Here we demonstrate single-crystal diamond cavity optomechanical devices that can enable photon-phonon-spin coupling. Cavity optomechanical coupling to $2,text{GHz}$ frequency ($f_text{m}$) mechanical resonances is observed. In room temperature ambient conditions, these resonances have a record combination of low dissipation (mechanical quality factor, $Q_text{m} > 9000$) and high frequency, with $Q_text{m}cdot f_text{m} sim 1.9times10^{13}$ sufficient for room temperature single phonon coherence. The system exhibits high optical quality factor ($Q_text{o} > 10^4$) resonances at infrared and visible wavelengths, is nearly sideband resolved, and exhibits optomechanical cooperativity $Csim 3$. The devices potential for optomechanical control of diamond electron spins is demonstrated through radiation pressure excitation of mechanical self-oscillations whose 31 pm amplitude is predicted to provide 0.6 MHz coupling rates to diamond nitrogen vacancy center ground state transitions (6 Hz / phonon), and $sim10^5$ stronger coupling rates to excited state transitions.
81 - J. Li , A. Xuereb , N. Malossi 2015
We study the cavity mode frequencies of a Fabry-Perot cavity containing two vibrating dielectric membranes. We derive the equations for the mode resonances and provide approximate analytical solutions for them as a function of the membrane positions, which act as an excellent approximation when the relative and center-of-mass position of the two membranes are much smaller than the cavity length. With these analytical solutions, one finds that extremely large optomechanical coupling of the membrane relative motion can be achieved in the limit of highly reflective membranes when the two membranes are placed very close to a resonance of the inner cavity formed by them. We also study the cavity finesse of the system and verify that, under the conditions of large coupling, it is not appreciably affected by the presence of the two membranes. The achievable large values of the ratio between the optomechanical coupling and the cavity decay rate, $g/kappa$, make this two-membrane system the simplest promising platform for implementing cavity optomechanics in the strong coupling regime.
We investigate the low loss acoustic motion of superfluid $^4$He parametrically coupled to a very low loss, superconducting Nb, TE$_{011}$ microwave resonator, forming a gram-scale, sideband resolved, optomechanical system. We demonstrate the detecti on of a series of acoustic modes with quality factors as high as $7cdot 10^6$. At higher temperatures, the lowest dissipation modes are limited by an intrinsic three phonon process. Acoustic quality factors approaching $10^{11}$ may be possible in isotopically purified samples at temperatures below 10 mK. A system of this type may be utilized to study macroscopic quantized motion and as an ultra-sensitive sensor of extremely weak displacements and forces, such as continuous gravity wave sources.
164 - H. X. Tang , D. Vitali 2014
Cavity optomechanical systems are approaching a strong-coupling regime where the coherent dynamics of nanomechanical resonators can be manipulated and controlled by optical fields at the single photon level. Here we propose an interferometric scheme able to detect optomechanical coherent interaction at the single-photon level which is experimentally feasible with state-of-the-art devices.
Developing future quantum communication may rely on the ability to engineer cavity-mediated interactions between photons and solid-state artificial atoms, in a deterministic way. Here, we report a set of technological and experimental developments fo r the deterministic coupling between the optical mode of a micropillar cavity and a quantum dot trion transition. We first identify a charged transition through in-plane magnetic field spectroscopy, and then tune the optical cavity mode to its energy via in-situ lithography. In addition, we design an asymmetric tunneling barrier to allow the optical trapping of the charge, assisted by a quasi-resonant pumping scheme, in order to control its occupation probability. We evaluate the generation of a positively-charged quantum dot through second order auto-correlation measurements of its resonance fluorescence, and the quality of light-matter interaction for these spin-photon interfaces is assessed by measuring the performance of the device as a single-photon source.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا