ﻻ يوجد ملخص باللغة العربية
Recently, deep neural network-powered quantitative susceptibility mapping (QSM), QSMnet, successfully performed ill conditioned dipole inversion in QSM and generated high-quality susceptibility maps. In this paper, the network, which was trained by healthy volunteer data, is evaluated for hemorrhagic lesions that have substantially higher susceptibility than healthy tissues in order to test linearity of QSMnet for susceptibility. The results show that QSMnet underestimates susceptibility in hemorrhagic lesions, revealing degraded linearity of the network for the untrained susceptibility range. To overcome this limitation, a data augmentation method is proposed to generalize the network for a wider range of susceptibility. The newly trained network, which is referred to as QSMnet+, is assessed in computer-simulated lesions with an extended susceptibility range (-1.4 ppm to +1.4 ppm) and also in twelve hemorrhagic patients. The simulation results demonstrate improved linearity of QSMnet+ over QSMnet (root mean square error of QSMnet+: 0.04 ppm vs. QSMnet: 0.36 ppm). When applied to patient data, QSMnet+ maps show less noticeable artifacts to those of conventional QSM maps. Moreover, the susceptibility values of QSMnet+ in hemorrhagic lesions are better matched to those of the conventional QSM method than those of QSMnet when analyzed using linear regression (QSMnet+: slope = 1.05, intercept = -0.03, R2 = 0.93; QSMnet: slope = 0.68, intercept = 0.06, R2 = 0.86), consolidating improved linearity in QSMnet+. This study demonstrates the importance of the trained data range in deep neural network-powered parametric mapping and suggests the data augmentation approach for generalization of network. The new network can be applicable for a wide range of susceptibility quantification.
Deep neural networks have demonstrated promising potential for the field of medical image reconstruction. In this work, an MRI reconstruction algorithm, which is referred to as quantitative susceptibility mapping (QSM), has been developed using a dee
Digital hologram rendering can be performed by a convolutional neural network, trained with image pairs calculated by numerical wave propagation from sparse generating images. 512-by-512 pixeldigital Gabor magnitude holograms are successfully estimat
We customize an end-to-end image compression framework for retina OCT images based on deep convolutional neural networks (CNNs). The customized compression scheme consists of three parts: data Preprocessing, compression CNNs, and reconstruction CNNs.
Deep neural networks have emerged as effective tools for computational imaging including quantitative phase microscopy of transparent samples. To reconstruct phase from intensity, current approaches rely on supervised learning with training examples;
This paper proposes a particle volume reconstruction directly from an in-line hologram using a deep neural network. Digital holographic volume reconstruction conventionally uses multiple diffraction calculations to obtain sectional reconstructed imag