ﻻ يوجد ملخص باللغة العربية
Deep neural networks have emerged as effective tools for computational imaging including quantitative phase microscopy of transparent samples. To reconstruct phase from intensity, current approaches rely on supervised learning with training examples; consequently, their performance is sensitive to a match of training and imaging settings. Here we propose a new approach to phase microscopy by using an untrained deep neural network for measurement formation, encapsulating the image prior and imaging physics. Our approach does not require any training data and simultaneously reconstructs the sought phase and pupil-plane aberrations by fitting the weights of the network to the captured images. To demonstrate experimentally, we reconstruct quantitative phase from through-focus images blindly (i.e. no explicit knowledge of the aberrations).
This paper proposes a deep learning-based channel estimation method for multi-cell interference-limited massive MIMO systems, in which base stations equipped with a large number of antennas serve multiple single-antenna users. The proposed estimator
Quantitative phase imaging (QPI) has been widely applied in characterizing cells and tissues. Spatial light interference microscopy (SLIM) is a highly sensitive QPI method, due to its partially coherent illumination and common path interferometry geo
Phase retrieval approaches based on DL provide a framework to obtain phase information from an intensity hologram or diffraction pattern in a robust manner and in real time. However, current DL architectures applied to the phase problem rely i) on pa
Unitary learning is a backpropagation that serves to unitary weights update in deep complex-valued neural network with full connections, meeting a physical unitary prior in diffractive deep neural network ([DN]2). However, the square matrix property
Video microscopy has a long history of providing insights and breakthroughs for a broad range of disciplines, from physics to biology. Image analysis to extract quantitative information from video microscopy data has traditionally relied on algorithm